Högskolan i Skövde

his.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Decision Support Architecture: Improvement Management of Manufacturing Sites Through Multi-Level Simulation-Based Optimization
University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Volvo Group Trucks Operations. (Virtual Production Development (VPD))ORCID iD: 0000-0003-1215-152X
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Manufacturing companies face a complex world with ever-changing demands, globalization, sustainability concerns, and economic challenges. Accurate improvement management and predicting future performance are crucial for staying competitive. Discrete-Event Simulation (DES) helps capture the dynamics of complex production systems, and Simulation-Based Optimization (SBO) can identify improvements with these models. However, past optimization approaches focused on individual production lines, which could lead to sub-optimizations when considering the performance of the manufacturing site. This research proposes a multi-level optimization approach for improvement management focusing on the performance of the manufacturing site.

High computational complexity resulting from combining several detailed models to create the site-level model is an obstacle to presenting decision support in a timeframe suitable for industrial decision-making. The research addresses this by validating a simplification method for DES models which replaces detailed models with simpler ones, sacrificing some detail and accuracy for faster runtime performance, enabling SBO for the site and supply chain level. %This is the first major contribution of this dissertation. 

The second part presents a Decision Support Architecture (DSA) using SBO to optimize site performance. The process starts by identifying the most critical bottleneck line on the entire site, including the specific parameter causing the issue, e.g., processing time or downtime. This approach prioritizes improvements with the highest impact for the least resource expenditure. Following this analysis, individual production lines are further optimized to identify specific equipment and parameters for improvement. Knowledge extraction algorithms then prioritize these improvements, guiding efforts and ensuring they benefit the entire site. Allowing for more efficient resource management, confidence that the proposed improvements are beneficial for the site, and improved decision-making at the site level.

The main novel research outcome of this dissertation lies in the multi-level optimization approach, combined with knowledge extraction and SBO enabled by simplified simulation models. This framework provides valuable insights for optimizing manufacturing sites in a complex and dynamic environment.

Abstract [sv]

Dagens tillverkningsindustrier behöver konkurrera i en omvärld som präglas av föränderliga krav, globalisering, krav på hållbarhet, och ekonomiska utmaningar. Noggrann förbättringshantering och möjligheten att kunna uppskatta framtida prestanda i produktionssystemen är avgörande för att förbli konkurrenskraftiga. Discrete-Event Simulation (DES) och Simulation-Based Optimization (SBO) är kraftfulla verktyg för att modellera och optimera komplexa produktionssystem. SBO har tidigare använts främst för enskilda produktionslinjer, vilket kan leda till suboptimeringar om hänsyn tas till hela systemets prestanda. Detta vetenskapliga bidrag föreslår ett angreppsätt där flernivå-optimering nyttjas för att fokusera på resultatet för hela systemet.

För att övervinna utmaningen med långa beräkningstider för komplexa modeller, utvärderar denna forskning en metod för att förenkla DES-modeller. Genom att minska detaljnoggrannheten kan beräkningstiden reduceras, vilket möjliggör snabbare SBO-analys av hela fabriker och värdeflöden. Denna förenklingsmetod är avgörande för att kunna erbjuda beslutsstöd inom en rimlig tid för industriellt beslutsfattande. Detta bidrag utgör avhandlingens första del.

Avhandlingens andra del presenterar en beslutstödsarkitektur, kallad Decision Support Architecture (DSA), som nyttjar SBO för att optimera fabriksprestanda. Processen inleds med att identifiera den mest kritiska flaskhalsen i produktionssystemet och den specifika parametern som behöver förbättras. Den här metoden prioriterar förbättringar med störst effekt för minsta resursförbrukning. Efter denna analys optimeras varje enskild produktionslinje med detaljerade modeller för att identifiera vilken utrustning och parameter som ger störst effekt på förbättringen. Algoritmer för kunskapsutvinning används sedan för att prioritera dessa förbättringar baserat på deras effekt på hela fabrikens prestanda, vilket leder till effektivare resurshantering och förbättrat beslutsfattande på fabriksnivå.

Det största vetenskapliga bidraget från denna avhandling utgörs av den utvecklade metoden för optimering på flera nivåer i kombination med kunskapsutvinning och SBO som möjliggörs av förenklade simuleringsmodeller. Detta ramverk ger värdefulla insikter för att optimera hela tillverkningssystem i en komplex och dynamisk miljö.

Place, publisher, year, edition, pages
Skövde: University of Skövde , 2024. , p. 275
Series
Dissertation Series ; 61
National Category
Computer Systems Production Engineering, Human Work Science and Ergonomics
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
URN: urn:nbn:se:his:diva-24455ISBN: 978-91-987907-5-7 (print)ISBN: 978-91-987907-6-4 (electronic)OAI: oai:DiVA.org:his-24455DiVA, id: diva2:1898406
Public defence
2024-10-18, ASSAR, Kavelbrovägen 2B, 541 36, Skövde, 10:00 (English)
Opponent
Supervisors
Part of project
Virtual factories with knowledge-driven optimization (VF-KDO), Knowledge Foundation
Funder
Knowledge Foundation
Note

Smart Industry Sweden research school

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of University of Skövde's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.

Två av fyra delarbeten (övriga se rubriken Delarbeten/List of papers):

3. Lidberg, Simon, Frantzén, Marcus, Aslam, Tehseen, and Ng, Amos H. C. (2024). “Model Simplification for Optimized Manufacturing Site Improvement Management”. Manuscript submitted to an international journal.

6. Lidberg, Simon (2024). “Multi-level simulation-based optimization in the cloud for continuous industrial decision support”. In: Ng, Amos H.C. and Bandaru, Sunith. Virtual Factories and Knowledge-Driven Optimization. Under review, pp. 1–20.

Available from: 2024-09-18 Created: 2024-09-17 Last updated: 2024-11-22Bibliographically approved
List of papers
1. Multi-Level Optimization with Aggregated Discrete-Event Models
Open this publication in new window or tab >>Multi-Level Optimization with Aggregated Discrete-Event Models
2020 (English)In: Proceedings of the 2020 Winter Simulation Conference / [ed] K.-H. Bae; B. Feng; S. Kim; S. Lazarova-Molnar; Z. Zheng; T. Roeder; R. Thiesing, IEEE, 2020, p. 1515-1526Conference paper, Published paper (Refereed)
Abstract [en]

Removing bottlenecks that restrain the overall performance of a factory can give companies a competitive edge. Although in principle, it is possible to connect multiple detailed discrete-event simulation models to form a complete factory model, it could be too computationally expensive, especially if the connected models are used for simulation-based optimizations. Observing that computational speed of running a simulation model can be significantly reduced by aggregating multiple line-level models into an aggregated factory level, this paper investigates, with some loss of detail, if the identified bottleneck information from an aggregated factory model, in terms of which parameters to improve, would be useful and accurate enough when compared to the bottleneck information obtained with some detailed connected line-level models. The results from a real-world, multi-level industrial application study have demonstrated the feasibility of this approach, showing that the aggregation method can represent the underlying detailed line-level model for bottleneck analysis.

Place, publisher, year, edition, pages
IEEE, 2020
Series
Proceedings of the Winter Simulation Conference, ISSN 0891-7736, E-ISSN 1558-4305
Keywords
Aggregation, Data mining, Decision support, Discrete event simulation, Industrial case study, Multi-objective optimization, Agglomeration, Decision making, Decision support systems, Decision trees, Digital storage, Multiobjective optimization, Trees (mathematics), Decision supports, Decision-tree algorithm, Industrial problem, Industrial systems, Knowledge extraction, Real-world optimization, Simulation-based optimizations
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
VF-KDO; Production and Automation Engineering
Identifiers
urn:nbn:se:his:diva-19643 (URN)10.1109/WSC48552.2020.9383990 (DOI)000679196301044 ()2-s2.0-85103904651 (Scopus ID)978-1-7281-9499-8 (ISBN)978-1-7281-9500-1 (ISBN)
Conference
Winter Simulation Conference, December 14-18, 2020, Virtual Conference
Funder
Knowledge Foundation
Note

Copyright © 2020, IEEE

Available from: 2021-04-20 Created: 2021-04-20 Last updated: 2024-09-17Bibliographically approved
2. Optimizing real-world factory flows using aggregated discrete event simulation modelling: Creating decision-support through simulation-based optimization and knowledge-extraction
Open this publication in new window or tab >>Optimizing real-world factory flows using aggregated discrete event simulation modelling: Creating decision-support through simulation-based optimization and knowledge-extraction
2020 (English)In: Flexible Services and Manufacturing Journal, ISSN 1936-6582, E-ISSN 1936-6590, Vol. 32, no 4, p. 888-912Article in journal (Refereed) Published
Abstract [en]

Reacting quickly to changing market demands and new variants by improving and adapting industrial systems is an important business advantage. Changes to systems are costly; especially when those systems are already in place. Resources invested should be targeted so that the results of the improvements are maximized. One method allowing this is the combination of discrete event simulation, aggregated models, multi-objective optimization, and data-mining shown in this article. A real-world optimization case study of an industrial problem is conducted resulting in lowering the storage levels, reducing lead time, and lowering batch sizes, showing the potential of optimizing on the factory level. Furthermore, a base for decision-support is presented, generating clusters from the optimization results. These clusters are then used as targets for a decision tree algorithm, creating rules for reaching different solutions for a decision-maker to choose from. Thereby allowing decisions to be driven by data, and not by intuition. 

Place, publisher, year, edition, pages
Springer, 2020
Keywords
Aggregation, Data mining, Decision support, Discrete event simulation, Industrial case study, Multi-objective optimization, Agglomeration, Decision making, Decision support systems, Decision trees, Digital storage, Multiobjective optimization, Trees (mathematics), Decision supports, Decision-tree algorithm, Industrial problem, Industrial systems, Knowledge extraction, Real-world optimization, Simulation-based optimizations
National Category
Production Engineering, Human Work Science and Ergonomics
Research subject
Production and Automation Engineering; VF-KDO
Identifiers
urn:nbn:se:his:diva-17480 (URN)10.1007/s10696-019-09362-7 (DOI)000591563100006 ()2-s2.0-85068764729 (Scopus ID)
Note

CC BY 4.0

Available from: 2019-07-25 Created: 2019-07-25 Last updated: 2024-09-17Bibliographically approved
3. Reproducible decision support for industrial decision making using a knowledge extraction platform on multi-objective optimization data
Open this publication in new window or tab >>Reproducible decision support for industrial decision making using a knowledge extraction platform on multi-objective optimization data
2023 (English)In: International Journal of Manufacturing Research, ISSN 1750-0591, Vol. 18, no 4, p. 454-480Article in journal (Refereed) Published
Abstract [en]

Simulation-based optimisation enables companies to take decisions based on data, and allows prescriptive analysis of current and future production scenarios, creating a competitive edge. However, effectively visualising and extracting knowledge from the vast amounts of data generated by many-objective optimisation algorithms can be challenging. We present an open-source, web-based application in the R language to extract knowledge from data generated from simulation-based optimisation. For the tool to be useful for real-world industrial decision-making support, several decision makers gave their requirements for such a tool. This information was used to augment the tool to provide the desired features for decision support in the industry. The open-source tool is then used to extract knowledge from two industrial use cases. Furthermore, we discuss future work, including planned additions to the open-source tool and the exploration of automatic model generation.

Place, publisher, year, edition, pages
InderScience Publishers, 2023
Keywords
knowledge-extraction, reproducible science, simulation-based optimisation, industrial use-case, decision-support, knowledge-driven optimisation
National Category
Production Engineering, Human Work Science and Ergonomics Computer Sciences Software Engineering
Research subject
VF-KDO; Virtual Production Development (VPD)
Identifiers
urn:nbn:se:his:diva-23078 (URN)10.1504/IJMR.2023.135645 (DOI)001128775300001 ()2-s2.0-85180929057 (Scopus ID)
Funder
Knowledge Foundation
Note

CC BY 4.0

Alternativ/tidigare DOI: 10.1504/ijmr.2024.10057049

Available from: 2023-08-09 Created: 2023-08-09 Last updated: 2024-09-17Bibliographically approved
4. A System Architecture for Continuous Manufacturing Decision Support Using Knowledge Generated from Multi-Level Simulation-Based Optimization
Open this publication in new window or tab >>A System Architecture for Continuous Manufacturing Decision Support Using Knowledge Generated from Multi-Level Simulation-Based Optimization
2024 (English)In: Sustainable Production through Advanced Manufacturing, Intelligent Automation and Work Integrated Learning: Proceedings of the 11th Swedish Production Symposium (SPS2024) / [ed] Joel Andersson; Shrikant Joshi; Lennart Malmsköld; Fabian Hanning, IOS Press, 2024, p. 231-243Conference paper, Published paper (Refereed)
Abstract [en]

Manufacturing is becoming increasingly complex as product life cycles shorten, and new disruptive technologies are introduced. The increased complexity in the manufacturing footprint also complicates industrial decision-making. Proposed improvements to alleviate bottlenecks do not guarantee effective problem resolution. Instead, improvement efforts can become misguided, targeting a bottleneck that affects a single production line rather than the entire site. An effective method for identifying production issues and predicting system performance is discrete-event simulation. When coupled with multi-objective optimization and multi-level modeling, production performance issues can be identified at both the site and workstation levels. However, optimization studies yield vast amounts of data, which can be challenging to extract useful knowledge from. To address this, we employ data-mining methods to assist decision-makers in extracting valuable insights from optimization data. This study presents an architecture for a decision support system that utilizes simulation-based optimization to continuously aid in industrial decision-making. Through a novel model generation method, simulation models are automatically generated and updated using logged data from the manufacturing shop floor and product lifecycle management systems. To reduce the computational complexity of the optimization, model simplification, varying replication numbers, surrogate modeling, and parallel computing in the cloud are also employed within this architecture. The results are presented to a decision-maker in an intelligent decision-support system, allowing for timely and relevant industrial decisions. 

Place, publisher, year, edition, pages
IOS Press, 2024
Series
Advances in Transdisciplinary Engineering, ISSN 2352-751X, E-ISSN 2352-7528 ; 52
Keywords
decision-support system, discrete-event simulation, industrial case study, knowledge discovery, multi-objective optimization, Architecture, Artificial intelligence, Computer architecture, Decision making, Decision support systems, Discrete event simulation, Information management, Life cycle, Multiobjective optimization, Continuous manufacturing, Decision makers, Decision supports, Decisions makings, Discrete-event simulations, Multi-objectives optimization, Multilevels, Simulation-based optimizations, Systems architecture, Data mining
National Category
Production Engineering, Human Work Science and Ergonomics Computer Sciences
Research subject
Virtual Production Development (VPD)
Identifiers
urn:nbn:se:his:diva-23830 (URN)10.3233/ATDE240168 (DOI)001229990300019 ()2-s2.0-85191304483 (Scopus ID)978-1-64368-510-6 (ISBN)978-1-64368-511-3 (ISBN)
Conference
11th Swedish Production Symposium, SPS 2024 Trollhättan 23 April 2024 through 26 April 2024
Note

CC BY-NC 4.0 DEED

© 2024 The Authors

Correspondence Address: S. Lidberg; Högskolan i Skövde, Högskolevägen, Skövde, Box 408, Sweden; email: simon.lidberg@his.se

Available from: 2024-05-13 Created: 2024-05-13 Last updated: 2024-09-17Bibliographically approved

Open Access in DiVA

fulltext(13733 kB)117 downloads
File information
File name FULLTEXT02.pdfFile size 13733 kBChecksum SHA-512
2be0ab865113ce6253e0844c11a6930e57529cad3771bcbcec30b13bb436ad0000c1af8afb3c557f9c188febbcebe6f8521102cd4436c90d516ebbcb34ecafaa
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Lidberg, Simon
By organisation
School of Engineering ScienceVirtual Engineering Research Environment
Computer SystemsProduction Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar
Total: 118 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 365 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf