Decision Support Architecture: Improvement Management of Manufacturing Sites Through Multi-Level Simulation-Based Optimization
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Manufacturing companies face a complex world with ever-changing demands, globalization, sustainability concerns, and economic challenges. Accurate improvement management and predicting future performance are crucial for staying competitive. Discrete-Event Simulation (DES) helps capture the dynamics of complex production systems, and Simulation-Based Optimization (SBO) can identify improvements with these models. However, past optimization approaches focused on individual production lines, which could lead to sub-optimizations when considering the performance of the manufacturing site. This research proposes a multi-level optimization approach for improvement management focusing on the performance of the manufacturing site.
High computational complexity resulting from combining several detailed models to create the site-level model is an obstacle to presenting decision support in a timeframe suitable for industrial decision-making. The research addresses this by validating a simplification method for DES models which replaces detailed models with simpler ones, sacrificing some detail and accuracy for faster runtime performance, enabling SBO for the site and supply chain level. %This is the first major contribution of this dissertation.
The second part presents a Decision Support Architecture (DSA) using SBO to optimize site performance. The process starts by identifying the most critical bottleneck line on the entire site, including the specific parameter causing the issue, e.g., processing time or downtime. This approach prioritizes improvements with the highest impact for the least resource expenditure. Following this analysis, individual production lines are further optimized to identify specific equipment and parameters for improvement. Knowledge extraction algorithms then prioritize these improvements, guiding efforts and ensuring they benefit the entire site. Allowing for more efficient resource management, confidence that the proposed improvements are beneficial for the site, and improved decision-making at the site level.
The main novel research outcome of this dissertation lies in the multi-level optimization approach, combined with knowledge extraction and SBO enabled by simplified simulation models. This framework provides valuable insights for optimizing manufacturing sites in a complex and dynamic environment.
Abstract [sv]
Dagens tillverkningsindustrier behöver konkurrera i en omvärld som präglas av föränderliga krav, globalisering, krav på hållbarhet, och ekonomiska utmaningar. Noggrann förbättringshantering och möjligheten att kunna uppskatta framtida prestanda i produktionssystemen är avgörande för att förbli konkurrenskraftiga. Discrete-Event Simulation (DES) och Simulation-Based Optimization (SBO) är kraftfulla verktyg för att modellera och optimera komplexa produktionssystem. SBO har tidigare använts främst för enskilda produktionslinjer, vilket kan leda till suboptimeringar om hänsyn tas till hela systemets prestanda. Detta vetenskapliga bidrag föreslår ett angreppsätt där flernivå-optimering nyttjas för att fokusera på resultatet för hela systemet.
För att övervinna utmaningen med långa beräkningstider för komplexa modeller, utvärderar denna forskning en metod för att förenkla DES-modeller. Genom att minska detaljnoggrannheten kan beräkningstiden reduceras, vilket möjliggör snabbare SBO-analys av hela fabriker och värdeflöden. Denna förenklingsmetod är avgörande för att kunna erbjuda beslutsstöd inom en rimlig tid för industriellt beslutsfattande. Detta bidrag utgör avhandlingens första del.
Avhandlingens andra del presenterar en beslutstödsarkitektur, kallad Decision Support Architecture (DSA), som nyttjar SBO för att optimera fabriksprestanda. Processen inleds med att identifiera den mest kritiska flaskhalsen i produktionssystemet och den specifika parametern som behöver förbättras. Den här metoden prioriterar förbättringar med störst effekt för minsta resursförbrukning. Efter denna analys optimeras varje enskild produktionslinje med detaljerade modeller för att identifiera vilken utrustning och parameter som ger störst effekt på förbättringen. Algoritmer för kunskapsutvinning används sedan för att prioritera dessa förbättringar baserat på deras effekt på hela fabrikens prestanda, vilket leder till effektivare resurshantering och förbättrat beslutsfattande på fabriksnivå.
Det största vetenskapliga bidraget från denna avhandling utgörs av den utvecklade metoden för optimering på flera nivåer i kombination med kunskapsutvinning och SBO som möjliggörs av förenklade simuleringsmodeller. Detta ramverk ger värdefulla insikter för att optimera hela tillverkningssystem i en komplex och dynamisk miljö.
Place, publisher, year, edition, pages
Skövde: University of Skövde , 2024. , p. 275
Series
Dissertation Series ; 61
National Category
Computer Systems Production Engineering, Human Work Science and Ergonomics
Research subject
Virtual Production Development (VPD); VF-KDO
Identifiers
URN: urn:nbn:se:his:diva-24455ISBN: 978-91-987907-5-7 (print)ISBN: 978-91-987907-6-4 (electronic)OAI: oai:DiVA.org:his-24455DiVA, id: diva2:1898406
Public defence
2024-10-18, ASSAR, Kavelbrovägen 2B, 541 36, Skövde, 10:00 (English)
Opponent
Supervisors
Part of project
Virtual factories with knowledge-driven optimization (VF-KDO), Knowledge Foundation
Funder
Knowledge Foundation
Note
Smart Industry Sweden research school
In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of University of Skövde's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.
Två av fyra delarbeten (övriga se rubriken Delarbeten/List of papers):
3. Lidberg, Simon, Frantzén, Marcus, Aslam, Tehseen, and Ng, Amos H. C. (2024). “Model Simplification for Optimized Manufacturing Site Improvement Management”. Manuscript submitted to an international journal.
6. Lidberg, Simon (2024). “Multi-level simulation-based optimization in the cloud for continuous industrial decision support”. In: Ng, Amos H.C. and Bandaru, Sunith. Virtual Factories and Knowledge-Driven Optimization. Under review, pp. 1–20.
2024-09-182024-09-172024-11-22Bibliographically approved
List of papers