Högskolan i Skövde

his.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hyperparameters relationship to the test accuracy of a convolutional neural network
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.
2021 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

Machine learning for image classification is a hot topic and it is increasing in popularity. Therefore the aim of this study is to provide a better understanding of convolutional neural network hyperparameters by comparing the test accuracy of convolutional neural network models with different hyperparameter value configurations. The focus of this study is to see whether there is an influence in the learning process depending on which hyperparameter values were used.

For conducting the experiments convolutional neural network models were developed using the programming language Python utilizing the library Keras. The dataset used for this study iscifar-10, it includes 60000 colour images of 10 categories ranging from man-made objects to different animal species. Grid search is used for instantiating models with varying learning rate and momentum, width and depth values. Learning rate is only tested combined with momentum and width is only tested combined with depth. Activation functions, convolutional layers and batch size are tested individually. Grid search is compared against Bayesian optimization to see which technique will find the most optimized learning rate and momentum values.

Results illustrate that the impact different hyperparameters have on the overall test accuracy varies. Learning rate and momentum affects the test accuracy greatly, however suboptimal values for learning rate and momentum can decrease the test accuracy severely. Activation function, width and depth, convolutional layer and batch size have a lesser impact on test accuracy. Regarding Bayesian optimization compared to grid search, results show that Bayesian optimization will not necessarily find more optimal hyperparameter values.

Ort, förlag, år, upplaga, sidor
2021. , s. 59, vi
Nyckelord [en]
Machine learning, image classification, hyperparameter, convolutional neural network, grid search, Bayesian optimization, cifar-10
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning
Identifikatorer
URN: urn:nbn:se:his:diva-19846OAI: oai:DiVA.org:his-19846DiVA, id: diva2:1567512
Ämne / kurs
Informationsteknologi
Utbildningsprogram
Datavetenskap - inriktning systemutveckling
Handledare
Examinatorer
Tillgänglig från: 2021-06-16 Skapad: 2021-06-16 Senast uppdaterad: 2025-09-29Bibliografiskt granskad

Open Access i DiVA

fulltext(1642 kB)190 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1642 kBChecksumma SHA-512
4af2591ccfc8dec6247bbf98d659ac8778cd2a0596ff3d5aca621d30dd74f9aac6a234289b4df5ba18fc93f6964bc307d9b9685f99de1e2df0d52c575b48ee9a
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för informationsteknologi
Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 190 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 360 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf