Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Production optimization using Discrete Event Simulation: Case study of Volvo Penta engine production line
Högskolan i Skövde, Institutionen för ingenjörsvetenskap.
2022 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 12 poäng / 18 hpOppgave
Abstract [en]

Simulation allows decision-makers in modern industries analyse the outputs of specific systems, and predict future ones based on certain decision variables when in combination with optimization and Lean. This project studies the production line of boat engines in Volvo Penta at Vara (Sweden), carrying out different experiments based on a verified and validated model of the real production system using FACTS Analyzer in order to improve the key performance indicators whilst comparing the optimization performance of four genetic algorithms (NSGA-II, NSGA-III, PSO and DE) and extracting knowledge using data mining.

Following the experimental design methodology, four main conclusions are obtained regarding the production line: simulation can be a successful tool to detect bottlenecks, optimization based on the resources such as the number of operators; forklifts and buffers can improve the outputs of the current system 22% just by rearranging the assets around the bottleneck and also helps predicts the behaviour of the system when these available resources are increased or decreased, when optimizing as they do not have the same performance it is important to cross-check the results of different algorithms to ensure the validity of the results, and lastly knowledge extraction can help decision[1]makers by providing sets of rules that selected solution areas of the optimization follow.

sted, utgiver, år, opplag, sider
2022. , s. 82
Emneord [en]
DES, optimization, genetic algorithms, knowledge extraction, FACTS, MIMER
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-21465OAI: oai:DiVA.org:his-21465DiVA, id: diva2:1678354
Eksternt samarbeid
Volvo Penta
Fag / kurs
Virtual Product Realization
Utdanningsprogram
Intelligent Automation - Master's Programme, 60 ECTS
Veileder
Examiner
Tilgjengelig fra: 2022-06-29 Laget: 2022-06-29 Sist oppdatert: 2025-09-29bibliografisk kontrollert

Open Access i DiVA

fulltext(4848 kB)510 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4848 kBChecksum SHA-512
47f9f5ad2a494c90f049fbbc0c383a71ed467072ad8963ba9a84b8acffc685fef64a10ee33ff1f8879379440e7fd443b80fad1f3def16c9f886ae11ece9bd641
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 516 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1380 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf