Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Convolutional, adversarial and random forest-based DGA detection: Comparative study for DGA detection with different machine learning algorithms
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.
Högskolan i Skövde, Institutionen för informationsteknologi.
2021 (engelsk)Independent thesis Basic level (degree of Bachelor), 20 poäng / 30 hpOppgave
Abstract [en]

Malware is becoming more intelligent as static methods for blocking communication with Command and Control (C&C) server are becoming obsolete. Domain Generation Algorithms (DGAs) are a common evasion technique that generates pseudo-random domain names to communicate with C&C servers in a difficult way to detect using handcrafted methods. Trying to detect DGAs by looking at the domain name is a broad and efficient approach to detect malware-infected hosts. This gives us the possibility of detecting a wider assortment of malware compared to other techniques, even without knowledge of the malware’s existence. Our study compared the effectiveness of three different machine learning classifiers: Convolutional Neural Network (CNN), Generative Adversarial Network (GAN) and Random Forest (RF) when recognizing patterns and identifying these pseudo-random domains.

The result indicates that CNN differed significantly from GAN and RF. It achieved 97.46% accuracy in the final evaluation, while RF achieved 93.89% and GAN achieved 60.39%. In the future, network traffic (efficiency) could be a key component to examine, as productivity may be harmed if the networkis over burdened by domain identification using machine learning algorithms.

sted, utgiver, år, opplag, sider
2021. , s. 52, xi
Emneord [en]
Domain generation algorithm, machine learning, neural networks, GAN, random forest, CNN
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-20103OAI: oai:DiVA.org:his-20103DiVA, id: diva2:1576371
Fag / kurs
Informationsteknologi
Utdanningsprogram
Computer Science - Specialization in Systems Development
Veileder
Examiner
Tilgjengelig fra: 2021-06-30 Laget: 2021-06-30 Sist oppdatert: 2025-09-29bibliografisk kontrollert

Open Access i DiVA

fulltext(1743 kB)676 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1743 kBChecksum SHA-512
b7b07d3a8e4ffdd386a23a749b7085189f7b5c8e8cd0ca431f53ea3f95819d9dd0a4cf807c1d250f41808faefc9fc1a0b071be68b2c86e2634036003aa9d93d3
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 676 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 1384 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf