Högskolan i Skövde

his.sePublikasjoner
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The impact of distance, feature weighting and selection for KNN in credit default prediction
Högskolan i Skövde, Institutionen för informationsteknologi.
2020 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
Abstract [en]

With the rapid spread of credit card business around the world, credit risk has also expanded dramatically. The occurrence of a large number of credit cardcustomer defaults has caused huge losses to financial institutions such as banks. Therefore, it is particularly important to accurately identify default customers. We investigate the use of the K Nearest Neighbor (KNN) algorithm, to evaluate the impact of the alternative distance functions, feature weighting, and feature selection on the accuracy and the area under curve (AUC) of the credit card default prediction model. For our evaluation, we use a credit card user dataset from Taiwan. We find that the Mahalanobis distance function performed best, feature weighting, and feature selection could improve the accuracy and AUC of the model.

sted, utgiver, år, opplag, sider
2020. , s. 37
HSV kategori
Identifikatorer
URN: urn:nbn:se:his:diva-18655OAI: oai:DiVA.org:his-18655DiVA, id: diva2:1448036
Fag / kurs
Informationsteknologi
Utdanningsprogram
Data Science - Master’s Programme
Veileder
Examiner
Tilgjengelig fra: 2020-06-26 Laget: 2020-06-26 Sist oppdatert: 2025-09-29bibliografisk kontrollert

Open Access i DiVA

fulltext(561 kB)607 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 561 kBChecksum SHA-512
5ed9df4b119e76fa1009d21cac0fcd617bc547d2a75b3253b03ba82ec6895bafc3484269be264f7e7ee1ae00398340833f6232571b329262d5f6ff273e14dbcf
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 607 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 684 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf