Criticalmanufacturingprocessesinsmartnetworkedsystems such as Cyber-Physical Production Systems (CPPSs) typically require guaranteed quality-of-service performances, which is supported by cyber- security management. Currently, most existing vulnerability-assessment techniques mostly rely on only the security department due to limited communication between di↵erent working groups. This poses a limitation to the security management of CPPSs, as malicious operations may use new exploits that occur between successive analysis milestones or across departmental managerial boundaries. Thus, it is important to study and analyse CPPS networks’ security, in terms of vulnerability analysis that accounts for humans in the production process loop, to prevent potential threats to infiltrate through cross-layer gaps and to reduce the magnitude of their impact. We propose a semantic framework that supports the col- laboration between di↵erent actors in the production process, to improve situation awareness for cyberthreats prevention. Stakeholders with dif- ferent expertise are contributing to vulnerability assessment, which can be further combined with attack-scenario analysis to provide more prac- tical analysis. In doing so, we show through a case study evaluation how our proposed framework leverages crucial relationships between vulner- abilities, threats and attacks, in order to narrow further the risk-window induced by discoverable vulnerabilities.