Högskolan i Skövde

his.sePublications
Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Amouzgar, Kaveh
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Metamodel Based Multi-Objective Optimization with Finite-Element Applications2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    As a result of the increase in accessibility of computational resources and the increase of computer power during the last two decades, designers are able to create computer models to simulate the behavior of complex products. To address global competitiveness, companies are forced to optimize the design of their products and production processes. Optimizing the design and production very often need several runs of computationally expensive simulation models. Therefore, integrating metamodels, as an efficient and sufficiently accurate approximate of the simulation model, with optimization algorithms is necessary. Furthermore, in most of engineering problems, more than one objective function has to be optimized, leading to multi-objective optimization(MOO). However, the urge to employ metamodels in MOO, i.e., metamodel based MOO (MB-MOO), is more substantial.Radial basis functions (RBF) is one of the most popular metamodeling methods. In this thesis, a new approach to constructing RBF with the bias to beset a priori by using the normal equation is proposed. The performance of the suggested approach is compared to the classic RBF and four other well-known metamodeling methods, in terms of accuracy, efficiency and, most importantly, suitability for integration with MOO evolutionary algorithms. It has been found that the proposed approach is accurate in most of the test functions, and it was the fastest compared to other methods. Additionally, the new approach is the most suitable method for MB-MOO, when integrated with evolutionary algorithms. The proposed approach is integrated with the strength Pareto evolutionary algorithm (SPEA2) and applied to two real-world engineering problems: MB-MOO of the disk brake system of a heavy truck, and the metal cutting process in a turning operation. Thereafter, the Pareto-optimal fronts are obtained and the results are presented. The MB-MOO in both case studies has been found to be an efficient and effective method. To validate the results of the latter MB-MOO case study, a framework for automated finite element (FE) simulation based MOO (SB-MOO) of machining processes is developed and presented by applying it to the same metal cutting process in a turning operation. It has been proved that the framework is effective in achieving the MOO of machining processes based on actual FE simulations.

    Download full text (pdf)
    Spikblad
    Download (pdf)
    omslag
    Download (pdf)
    fulltext
  • 2.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Bandaru, Sunith
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Andersson, Tobias J.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    A framework for simulation based multi-objective optimization and knowledge discovery of machining process2018In: The International Journal of Advanced Manufacturing Technology, ISSN 0268-3768, E-ISSN 1433-3015, Vol. 98, no 9-12, p. 2469-2486Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 3.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Bandaru, Sunith
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Andersson, Tobias J.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Metamodel based multi-objective optimization of a turning process by using finite element simulationManuscript (preprint) (Other academic)
    Abstract [en]

    This study investigates the advantages and potentials of the metamodelbased multi-objective optimization (MOO) of a turning operation through the application of finite element simulations and evolutionary algorithms to a metal cutting process. The objectives are minimizing the interface temperature and tool wear depth obtained from FE simulations using DEFORM2D software, and maximizing the material removal rate. Tool geometry and process parameters are considered as the input variables. Seven metamodelling methods are employed and evaluated, based on accuracy and suitability. Radial basis functions with a priori bias and Kriging are chosen to model tool–chip interface temperature and tool wear depth, respectively. The non-dominated solutions are found using the strength Pareto evolutionary algorithm SPEA2 and compared with the non-dominated front obtained from pure simulation-based MOO. The metamodel-based MOO method is not only advantageous in terms of reducing the computational time by 70%, but is also able to discover 31 new non-dominated solutions over simulation-based MOO.

  • 4.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Bandaru, Sunith
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Andersson, Tobias
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Metamodel based multi-objective optimization of a turning process by using finite element simulation2020In: Engineering optimization (Print), ISSN 0305-215X, E-ISSN 1029-0273, Vol. 52, no 7, p. 1261-1278Article in journal (Refereed)
    Abstract [en]

    This study investigates the advantages and potentials of the metamodelbased multi-objective optimization (MOO) of a turning operation through the application of finite element simulations and evolutionary algorithms to a metal cutting process. The objectives are minimizing the interface temperature and tool wear depth obtained from FE simulations using DEFORM2D software, and maximizing the material removal rate. Tool geometry and process parameters are considered as the input variables. Seven metamodelling methods are employed and evaluated, based on accuracy and suitability. Radial basis functions with a priori bias and Kriging are chosen to model tool–chip interface temperature and tool wear depth, respectively. The non-dominated solutions are found using the strength Pareto evolutionary algorithm SPEA2 and compared with the non-dominated front obtained from pure simulation-based MOO. The metamodel-based MOO method is not only advantageous in terms of reducing the computational time by 70%, but is also able to discover 31 new non-dominated solutions over simulation-based MOO.

    Download full text (pdf)
    fulltext
  • 5.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Bandaru, Sunith
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Radial basis functions with a priori bias as surrogate models: A comparative study2018In: Engineering applications of artificial intelligence, ISSN 0952-1976, E-ISSN 1873-6769, Vol. 71, p. 28-44Article in journal (Refereed)
    Abstract [en]

    Radial basis functions are augmented with a posteriori bias in order to perform robustly when used as metamodels. Recently, it has been proposed that the bias can simply be set a priori by using the normal equation, i.e., the bias becomes the corresponding regression model. In this study, we demonstrate the performance of the suggested approach (RBFpri) with four other well-known metamodeling methods; Kriging, support vector regression, neural network and multivariate adaptive regression. The performance of the five methods is investigated by a comparative study, using 19 mathematical test functions, with five different degrees of dimensionality and sampling size for each function. The performance is evaluated by root mean squared error representing the accuracy, rank error representing the suitability of metamodels when coupled with evolutionary optimization algorithms, training time representing the efficiency and variation of root mean squared error representing the robustness. Furthermore, a rigorous statistical analysis of performance metrics is performed. The results show that the proposed radial basis function with a priori bias achieved the best performance in most of the experiments in terms of all three metrics. When considering the statistical analysis results, the proposed approach again behaved the best, while Kriging was relatively as accurate and support vector regression was almost as fast as RBFpri. The proposed RBF is proven to be the most suitable method in predicting the ranking among pairs of solutions utilized in evolutionary algorithms. Finally, the comparison study is carried out on a real-world engineering optimization problem.

  • 6.
    Amouzgar, Kaveh
    et al.
    School of Engineering, Jönköping University, Sweden.
    Cenanovic, Mirza
    School of Engineering, Jönköping University, Sweden.
    Salomonsson, Kent
    School of Engineering, Jönköping University, Sweden.
    Multi-objective optimization of material model parameters of an adhesive layer by using SPEA22015In: Advances in structural and multidisciplinary optimization: Proceedings of the 11th World Congress of Structural and Multidisciplinary Optimization (WCSMO-11), June7-12, 2015, Sydney, Australia / [ed] Qing Li; Grant P. Steven; Zhongpu (Leo) Zhang, The International Society for Structural and Multidisciplinary Optimization (ISSMO) , 2015, p. 249-254Conference paper (Refereed)
    Abstract [en]

    The usage of multi material structures in industry, especially in the automotive industry are increasing. To overcome the difficulties in joining these structures, adhesives have several benefits over traditional joining methods. Therefore, accurate simulations of the entire process of fracture including the adhesive layer is crucial. In this paper, material parameters of a previously developed meso mechanical finite element (FE) model of a thin adhesive layer are optimized using the Strength Pareto Evolutionary Algorithm (SPEA2). Objective functions are defined as the error between experimental data and simulation data. The experimental data is provided by previously performed experiments where an adhesive layer was loaded in monotonically increasing peel and shear. Two objective functions are dependent on 9 model parameters (decision variables) in total and are evaluated by running two FEsimulations, one is loading the adhesive layer in peel and the other in shear. The original study converted the two objective functions into one function that resulted in one optimal solution. In this study, however, a Pareto frontis obtained by employing the SPEA2 algorithm. Thus, more insight into the material model, objective functions, optimal solutions and decision space is acquired using the Pareto front. We compare the results and show good agreement with the experimental data.

  • 7.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Division of Industrial Engineering and Management, Uppsala University, Sweden.
    Ljustina, Goran
    Volvo Car Corporation, ME PS Research and Technology, Skövde, Sweden.
    Optimizing index positions on CNC tool magazines considering cutting tool life and duplicates2020In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 93, p. 1508-1513Article in journal (Refereed)
    Abstract [en]

    Minimizing the non-machining time of CNC machines requires optimal positioning of cutting tools on indexes (stations) of CNC machine turret magazine. This work presents a genetic algorithm with a novel solution representation and genetic operators to find the best possible index positions while tool duplicates and tools life are taken in to account during the process. The tool allocation in a machining process of a crankshaft with 10 cutting operations, on a 45-index magazine, is optimized for the entire life of the tools on the magazine. The tool-indexing time is considerably reduced compared to the current index positions being used in an automotive factory. 

    Download full text (pdf)
    fulltext
  • 8.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Division of Industrial Engineering and Management, Uppsala University.
    Nourmohammadi, Amir
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Division of Industrial Engineering and Management, Uppsala University.
    Multi-objective optimisation of tool indexing problem: a mathematical model and a modified genetic algorithm2021In: International Journal of Production Research, ISSN 0020-7543, E-ISSN 1366-588X, Vol. 59, no 12, p. 3572-3590Article in journal (Refereed)
    Abstract [en]

    Machining process efficiencies can be improved by minimising the non-machining time, thereby resulting in short operation cycles. In automatic-machining centres, this is realised via optimum cutting tool allocation on turret-magazine indices – the “tool-indexing problem”. Extant literature simplifies TIP as a single-objective optimisation problem by considering minimisation of only the tool-indexing time. In contrast, this study aims to address the multi-objective optimisation tool indexing problem (MOOTIP) by identifying changes that must be made to current industrial settings as an additional objective. Furthermore, tool duplicates and lifespan have been considered. In addition, a novel mathematical model is proposed for solving MOOTIP. Given the complexity of the problem, the authors suggest the use of a modified strength Pareto evolutionary algorithm combined with a customised environment-selection mechanism. The proposed approach attained a uniform distribution of solutions to realise the above objectives. Additionally, a customised solution representation was developed along with corresponding genetic operators to ensure the feasibility of solutions obtained. Results obtained in this study demonstrate the realization of not only a significant (70%) reduction in non-machining time but also a set of tradeoff solutions for decision makers to manage their tools more efficiently compared to current practices. 

    Download full text (pdf)
    fulltext
  • 9.
    Amouzgar, Kaveh
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Product Development Department, School of Engineering, Jönköping University, Jönköping, Sweden.
    Strömberg, Niclas
    Department of Mechanical Engineering, School of Science and Technology, University of Örebro, Sweden.
    Radial basis functions as surrogate models with a priori bias in comparison with a posteriori bias2017In: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 55, no 4, p. 1453-1469Article in journal (Refereed)
    Abstract [en]

    In order to obtain a robust performance, the established approach when using radial basis function networks (RBF) as metamodels is to add a posteriori bias which is defined by extra orthogonality constraints. We mean that this is not needed, instead the bias can simply be set a priori by using the normal equation, i.e. the bias becomes the corresponding regression model. In this paper we demonstrate that the performance of our suggested approach with a priori bias is in general as good as, or even for many test examples better than, the performance of RBF with a posteriori bias. Using our approach, it is clear that the global response is modelled with the bias and that the details are captured with radial basis functions. The accuracy of the two approaches are investigated by using multiple test functions with different degrees of dimensionality. Furthermore, several modeling criteria, such as the type of radial basis functions used in the RBFs, dimension of the test functions, sampling techniques and size of samples, are considered to study their affect on the performance of the approaches. The power of RBF with a priori bias for surrogate based design optimization is also demonstrated by solving an established engineering benchmark of a welded beam and another benchmark for different sampling sets generated by successive screening, random, Latin hypercube and Hammersley sampling, respectively. The results obtained by evaluation of the performance metrics, the modeling criteria and the presented optimal solutions, demonstrate promising potentials of our RBF with a priori bias, in addition to the simplicity and straight-forward use of the approach.

    Download full text (pdf)
    fulltext
  • 10.
    Morshedzadeh, Iman
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Amouzgar, Kaveh
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Management of virtual models with provenance information in the context of product lifecycle management: industrial case studies2019In: Product Lifecycle Management (Volume 4): The Case Studies / [ed] John Stark, Cham: Springer, 2019, 1, p. 153-170Chapter in book (Refereed)
    Abstract [en]

    Using virtual models instead of physical models can help industries reduce the time and cost of developments, despite the time consuming process of building virtual models. Therefore, reusing previously built virtual models instead of starting from scratch can eliminate a large amount of work from users. Is having a virtual model enough to reuse it in another study or task? In most cases, not. Information about the history of that model makes it clear for the users to decide if they can reuse this model or to what extent the model is needed to be modified. A provenance management system (PMS) has been designed to manage provenance information, and it has been used with product lifecycle management system (PLM) and computer-aided technologies (CAx) to save and present historical information about a virtual model. This chapter presents a sequence-based framework of the CAx-PLM-PMS chain and two application case studies considering the implementation of this framework.

  • 11.
    Olofsson, Jakob
    et al.
    Department of Materials and Manufacturing – Casting, Jönköping University, School of Engineering, Jönköping, Sweden.
    Salomonsson, Kent
    Department of Product Development, Jönköping University, School of Engineering, Jönköping, Sweden.
    Johansson, Joel
    Department of Product Development, Jönköping University, School of Engineering, Jönköping, Sweden.
    Amouzgar, Kaveh
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    A methodology for microstructure-based structural optimization of cast and injection moulded parts using knowledge-based design automation2017In: Advances in Engineering Software, ISSN 0965-9978, E-ISSN 1873-5339, Vol. 109, p. 44-52Article in journal (Refereed)
    Abstract [en]

    The local material behaviour of cast metal and injection moulded parts is highly related to the geometrical design of the part as well as to a large number of process parameters. In order to use structural optimization methods to find the geometry that gives the best possible performance, both the geometry and the effect of the production process on the local material behaviour thus has to be considered. In this work, a multidisciplinary methodology to consider local microstructure-based material behaviour in optimizations of the design of engineering structures is presented. By adopting a knowledge based industrial product realisation perspective combined with a previously presented simulation strategy for microstructure-based material behaviour in Finite Element Analyses (FEA), the methodology integrates Computer Aided Design (CAD), casting and injection moulding simulations, FEA, design automation and a multi-objective optimization scheme into a novel structural optimization method for cast metal and injection moulded polymeric parts. The different concepts and modules in the methodology are described, their implementation into a prototype software is outlined, and the application and relevance of the methodology is discussed. 

  • 12.
    Schmitt, Thomas
    et al.
    Scania CV AB, Smart Factory Lab, Södertälje, Sweden ; Uppsala University, Department of Civil and Industrial Engineering, Uppsala, Sweden.
    Viklund, Philip
    Scania CV AB, Smart Factory Lab, Södertälje, Sweden ; Uppsala University, Department of Civil and Industrial Engineering, Uppsala, Sweden.
    Sjölander, Martina
    Scania CV AB, Smart Factory Lab, Södertälje, Sweden ; Uppsala University, Department of Civil and Industrial Engineering, Uppsala, Sweden.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Amouzgar, Kaveh
    Uppsala University, Department of Civil and Industrial Engineering, Uppsala, Sweden.
    Urenda Moris, Matías
    Uppsala University, Department of Civil and Industrial Engineering, Uppsala, Sweden.
    Augmented reality for machine monitoring in industrial manufacturing: framework and application development2023In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, p. 1327-1332Article in journal (Refereed)
    Abstract [en]

    Enhancing data visualization on the shop floor provides support for dealing with the increasing complexity of production and the need for progressing towards emerging goals like energy efficiency. It enables personnel to make informed decisions based on real-time data displayed on user-friendly interfaces. Augmented reality (AR) technology provides a promising solution to this problem by allowing for the visualization of data in a more immersive and interactive way. The aim of this study is to present a framework to visualize live and historic data about energy consumption in AR, using Power BI and Unity, and discuss the applications' capabilities. The study demonstrated that both Power BI and Unity can effectively visualize near-real-time machine data with the aid of appropriate data pipelines. While both applications have their respective strengths and limitations, they can support informed decision-making and proactive measures to improve energy utilization. Additional research is needed to examine the correlation between energy consumption and production dynamics, as well as to assess the user-friendliness of the data presentation for effective decision-making support. 

    Download full text (pdf)
    fulltext
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf