his.sePublications
Change search
Refine search result
567891011 351 - 400 of 658
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 351.
    Li, Cai
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Bredies, Katharina
    Department of Design, Faculty of Textiles, Engineering and Business, University of Borås, Sweden.
    Lund, Anja
    Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Sweden.
    Nierstrasz, Vincent
    Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Sweden.
    Hemeren, Paul
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    k-Nearest-Neighbour based Numerical Hand Posture Recognition using a Smart Textile Glove2015In: AMBIENT 2015: The Fifth International Conference on Ambient Computing, Applications, Services and Technologies / [ed] MaartenWeyn, International Academy, Research and Industry Association (IARIA), 2015, p. 36-41Conference paper (Refereed)
    Abstract [en]

    In this article, the authors present an interdisciplinary project that illustrates the potential and challenges in dealing with electronic textiles as sensing devices. An interactive system consisting of a knitted sensor glove and electronic circuit and a numeric hand posture recognition algorithm based on k-nearestneighbour (kNN) is introduced. The design of the sensor glove itself is described, considering two sensitive fiber materials – piezoresistive and piezoelectric fibers – and the construction using an industrial knitting machine as well as the electronic setup is sketched out. Based on the characteristics of the textile sensors, a kNN technique based on a condensed dataset has been chosen to recognize hand postures indicating numbers from one to five from the sensor data. The authors describe two types of data condensation techniques (Reduced Nearest Neighbours and Fast Condensed Nearest Neighbours) in order to improve the data quality used by kNN, which are compared in terms of run time, condensation rate and recognition accuracy. Finally, the article gives an outlook on potential application scenarios for sensor gloves in pervasive computing.

  • 352.
    Li, Weidong
    et al.
    Coventry University, United Kingdom.
    Wang, Lihui
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Li, Xinyu
    Huazhong University of Science and Technology, China.
    Gao, Liang
    Huazhong University of Science and Technology, China.
    Intelligent Optimisation for Integrated Process Planning and Scheduling2011In: Multi-objective Evolutionary Optimisation for Product Design and Manufacturing / [ed] Lihui Wang, Amos H. C. Ng, Kalyanmoy Deb, Springer London, 2011, p. 305-324Chapter in book (Refereed)
    Abstract [en]

    Traditionally, process planning and scheduling were performed sequentially, where scheduling was executed after process plans had been generated. Considering the fact that the two functions are usually complementary, it is necessary to integrate them more tightly so that the performance of a manufacturing system can be improved greatly. In this chapter, a multi-agent-based framework has been developed to facilitate the integration of the two functions. In the framework, the two functions are carried out simultaneously, and an optimization agent based on evolutionary algorithms is used to manage the interactions and communications between agents to enable proper decisions to be made. To verify the feasibility and performance of the proposed approach, experimental studies conducted to compare this approach and some previous works are presented. The experimental results show the proposed approach has achieved significant improvement.

  • 353.
    Lidberg, Simon
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Volvo Car Corporation, Sweden.
    Aslam, Tehseen
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Pehrsson, Leif
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Evaluating the impact of changes on a global supply chain using an iterative approach in a proof-of-concept model2018In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, 2018, University of Skövde, Sweden / [ed] Peter Thorvald, Keith Case, Amsterdam: IOS Press, 2018, p. 467-472Conference paper (Refereed)
    Abstract [en]

    Analyzing networks of supply-chains, where each chain is comprised of several actors with different purposes and performance measures, is a difficult task. There exists a large potential in optimizing supply-chains for many companies and therefore the supply-chain optimization problem is of great interest to study. To be able to optimize the supply-chain on a global scale, fast models are needed to reduce computational time. Previous research has been made into the aggregation of factories, but the technique has not been tested against supply-chain problems. When evaluating the configuration of factories and their inter-transportation on a global scale, new insights can be gained about which parameters are important and how the aggregation fits to a supply-chain problem. The paper presents an interactive proof-of-concept model enabling testing of supply chain concepts by users and decision makers.

  • 354.
    Lidberg, Simon
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Aslam, Tehseen
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Pehrsson, Leif
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Optimizing real-world factory flows using aggregated discrete event simulation modelling: Creating decision-support through simulation-based optimization and knowledge-extraction2019In: Flexible Services and Manufacturing Journal, ISSN 1936-6582, E-ISSN 1936-6590Article in journal (Refereed)
    Abstract [en]

    Reacting quickly to changing market demands and new variants by improving and adapting industrial systems is an important business advantage. Changes to systems are costly; especially when those systems are already in place. Resources invested should be targeted so that the results of the improvements are maximized. One method allowing this is the combination of discrete event simulation, aggregated models, multi-objective optimization, and data-mining shown in this article. A real-world optimization case study of an industrial problem is conducted resulting in lowering the storage levels, reducing lead time, and lowering batch sizes, showing the potential of optimizing on the factory level. Furthermore, a base for decision-support is presented, generating clusters from the optimization results. These clusters are then used as targets for a decision tree algorithm, creating rules for reaching different solutions for a decision-maker to choose from. Thereby allowing decisions to be driven by data, and not by intuition. 

  • 355.
    Lidberg, Simon
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Volvo Car Corporation, Skövde, Sweden.
    Pehrsson, Leif
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Frantzén, Marcus
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Applying Aggregated Line Modeling Techniques to Optimize Real World Manufacturing Systems2018In: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 25, p. 89-96Article in journal (Refereed)
    Abstract [en]

    The application of discrete event simulation methodology in the analysis of higher level manufacturing systems has been limited due to model complexity and the lack of aggregation techniques for manufacturing lines. Recent research has introduced new aggregation methods preparing for new approaches in the analysis of higher level manufacturing systems or networks. In this paper one of the new aggregated line modeling techniques is successfully applied on a real world manufacturing system, solving a real-world problem. The results demonstrate that the aggregation technique is adequate to be applied in plant wide models. Furthermore, in this particular case, there is a potential to reduce storage levels by over 25 %, through leveling the production flow, without compromising deliveries to customers.

  • 356.
    Lidberg, Simon
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Pehrsson, Leif
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Using Aggregated Discrete Event Simulation Models and Multi-Objective Optimization to Improve Real-World Factories2018In: Proceedings of the 2018 Winter Simulation Conference / [ed] M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, B. Johansson, IEEE, 2018, p. 2015-2024Conference paper (Refereed)
    Abstract [en]

    Improving production line performance and identifying bottlenecks using simulation-based optimization has been shown to be an effective approach. Nevertheless, for larger production systems which are consisted of multiple production lines, using simulation-based optimization can be too computationally expensive, due to the complexity of the models. Previous research has shown promising techniques for aggregating production line data into computationally efficient modules, which enables the simulation of higher-level systems, i.e., factories. This paper shows how a real-world factory flow can be optimized by applying the previously mentioned aggregation techniques in combination with multi-objective optimization using an experimental approach. The particular case studied in this paper reveals potential reductions of storage levels by over 30 %, lead time reductions by 67 %, and batch sizes reduced by more than 50 % while maintaining the delivery precision of the industrial system.

  • 357.
    Lind, Carl Mikael
    et al.
    Unit of Occupational Medicine, Karolinska Institutet, Stockholm, Sweden / Division of Ergonomics, KTH Royal Institute of Technology, Huddinge, Sweden.
    Sandsjö, Leif
    Faculty of Caring Science, Work Life and Social Welfare, University of Borås, Sweden / Design & Human Factors, Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, Sweden.
    Mahdavian, Nafise
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Scania CV, Södertälje, Sweden.
    Olivares, Jozé Antonio Diaz
    Division of Ergonomics, KTH Royal Institute of Technology, Huddinge, Sweden.
    Yang, Liyun
    Unit of Occupational Medicine, Karolinska Institutet, Stockholm, Sweden / Division of Ergonomics, KTH Royal Institute of Technology, Huddinge, Sweden.
    Forsman, Mikael
    Unit of Occupational Medicine, Karolinska Institutet, Stockholm, Sweden / Division of Ergonomics, KTH Royal Institute of Technology, Huddinge, Sweden.
    Prevention of Work: Related Musculoskeletal Disorders Using Smart Workwear – The Smart Workwear Consortium2019In: Human Systems Engineering and Design: Proceedings of the 1st International Conference on Human Systems Engineering and Design (IHSED2018): Future Trends and Applications, October 25-27, 2018, CHU-Université de Reims Champagne-Ardenne, France / [ed] Tareq Ahram, Waldemar Karwowski, Redha Taiar, Springer, 2019, Vol. 876, p. 477-483Conference paper (Refereed)
    Abstract [en]

    Adverse work-related physical exposures such as repetitive movements and awkward postures have negative health effects and lead to large financial costs. To address these problems, a multi-disciplinary consortium was formed with the aim of developing an ambulatory system for recording and analyzing risks for musculoskeletal disorders utilizing textile integrated sensors as part of the regular workwear. This paper presents the consortium, the Smart Workwear System, and a case study illustrating its potential to decrease adverse biomechanical exposure by promoting improved work technique. 

  • 358.
    Lindblom, Jessica
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Thorvald, Peter
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Manufacturing in the wild: viewing human-based assembly through the lens of distributed cognition2017In: Production & Manufacturing Research, ISSN 2169-3277, Vol. 5, no 1, p. 57-80Article in journal (Refereed)
    Abstract [en]

    The interdisciplinary field of cognitive science has been and isbecoming increasingly central within human factors and ergonomics(HF&E) and, since at the same time, there has long been a call for a more systems perspective in the area with a somewhat wider unit of analysis. This paper argues that the theoretical framework of distributed cognition would greatly benefit the application of HF&E to manufacturing and would offer a more holistic understanding of the interactions between different entities within a greater context,including the social, cultural and materialistic. We aim to characterize and analyse manufacturing as a complex socio-technical system from a distributed cognition perspective; focusing on the use, mediation and integration of different forms of representations, tools and artefacts in this domain. We present illustrative examples fromauthentic manual assembly, showing the cognitively distributed nature of the work, ranging from scaffolding strategies of the individual worker to the emergent properties of a whole assembly line. The paper further proposes and provides benefits of using a distributed cognition framework as a novel approach in the toolboxfor the HF&E discipline, where it may have been found before, but the application to manufacturing has been absent.

  • 359.
    Lindblom, Jessica
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Thorvald, Peter
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Towards a framework for reducing cognitive load in manufacturing personnel2014In: Advances in Cognitive Engineering and Neuroergonomics / [ed] Kay Stanney & Kelly S. Hale, AHFE , 2014, p. 233-244Conference paper (Refereed)
    Abstract [en]

    The interest in cognitive aspects of human performance has dramatically increased in recent years in manufacturing, complementing the area of physical ergonomics, and the expanded focus on cognitive aspects may offer significant insights and contributions to industrial domains. A considerably increased interest has been directed at the role and effects cognitive load has on human performance, and ultimately on production outcome. The main question addressed is: How can an understanding of cognitive load in manufacturing lead us to design better workplaces for the personnel at the shop floor? To answer this question, we have to consider how technology interacts with work environment and with human cognition from a systems perspective. Technology should be considered a resource in the design of a better working environment, aid those activities for which we are poorly suited cognitively, and enhance those cognitive skills for which we are ideally suited. This has resulted in a potential framework of factors that might have impact on high cognitive load, consisting of three levels; internal factors, external factors, and activity space. The initial framework focuses primarily on the former factors, identifying risks where a high cognitive load might lead to difficulty of work, negatively affecting production outcome.

  • 360.
    Lindblom, Jessica
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Wang, Wei
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Towards an Evaluation Framework of Safety, Trust, and Operator Experience in Different Demonstrators of Human-Robot Collaboration2018In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, 2018, University of Skövde, Sweden / [ed] Peter Thorvald, Keith Case, Amsterdam: IOS Press, 2018, p. 145-150Conference paper (Refereed)
    Abstract [en]

    Advancements in human-robot collaboration (HRC) are regarded as major aspects of the future Industry 4.0. HRC entails humans that cooperatively work with robots in dynamic, changing, and unpredictable settings where they should assist and learn from each other and automatically respond to changes. This requires research and development to investigate and evaluate how these hybrid collaborative systems should function and distribute work. The common practice is to focus on performance-related issues, which are highly influenced by human factors (HF). Because of the prevailing orientation towards HF, HRC runs the risk of not considering the modern understandings of human cognition and technology-mediated activity, in which humans are considered as actors (not factors) in a socio-material context. Although HF is dominant and well justified, the problem is that it may hinder general development, because it is not aligned with the modern understanding of cultivating a safety culture that promotes continuous improvements and development as an inherent attitude of companies and work practices. Taking an opposite approach, where the human operators working together with robots are playing active and positive roles in constructing safety, trust, and good operator experience. Hence, the collaborative human-robot system perspective addresses the need to develop and assess new evaluation methods that consider aspects like safety, trust, and operator experience from modern understandings of human cognition and technology-mediated activity, where also different levels of in human-robot collaboration have to be considered. This paper presents 1) the initial conceptual framework of HRC that addresses these above issues. It also describes 2) the design of a comparative analysis and benchmarking tasks of operators when interacting closely with robots, in three different demonstrators of varying levels of collaboration. The final outcome from this work should, in the long run, function as a roadmap for successful implementation of HRC in industry.

  • 361.
    Linnéusson, Gary
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    On System Dynamics as an Approach for Manufacturing Systems Development2009Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Improvement work in manufacturing industry usually focuses on the utilisation of equipment. System dynamics simulation is a potential tool for increasing the utilisation of systems. By using group model building and simulation it facilitates a common view and better informed decisions for change. However, a gap between theory and practice of how to implement these projects is identified, consequently the major question for this thesis. The approach for solving this problem used industrial case studies with action research character; including modelling and interviews affecting the actors in the studied systems. Together with literature studies these efforts contribute with identifying how system dynamics projects can be performed for manufacturing systems development. It is shown that the support for how to implement system dynamics projects is unsatisfying and general. During the research progress a framework of guidelines has crystallised in order to bridge the presented gap of this thesis. Finally, the results are considered to make it easier to support manufacturing systems development using system dynamics.

  • 362.
    Linnéusson, Gary
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Towards strategic development of maintenance and its effects on production performance: A hybrid simulation-based optimization framework2018Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Managing maintenance in manufacturing within an economical short-termism framework and taking the consequential long-term cost effects into account is hard. The increasing complexity of managing maintenance and its impact on the business results calls for more advanced methods to support long-term development through effective activities in the production system environment. This problem-based design science research has evolved into the novel concept of a hybrid simulation-based optimization (SBO) framework which integrates multi-objective optimization (MOO) with system dynamics (SD) and discrete-event simulation (DES) respectively. The objective is to support managers in their decision-making on the strategic and operational levels for prioritizing activities to develop maintenance and production performance.

    To exemplify the hybrid SBO framework this research presents an SD model for the study of the dynamic behaviors of maintenance performance and costs, which aims to illuminate insights for the support of the long-term strategic development of maintenance practices. The model promotes a system view of maintenance costs that includes the dynamic consequential costs as the combined result of several interacting maintenance levels throughout the constituent feedback structures. These levels range from the applied combination of maintenance methodologies to the resulting proactiveness in production, such as the ratio between planned and unplanned downtime, in continuous change based on the rate of improvements arising from root-cause analyses of breakdowns. The model creation and validation process have been supported by two large maintenance organizations operating in the Swedish automotive industry. Experimental results show that intended changes can have both short-term and longterm consequences, and that the system may show both obvious and hidden dynamic behavioral effects.

    The application of MOO distinguishes this work from previous research efforts that have mixed SD and DES. It presents a unique methodology to support more quantitative and objective-driven decision making in maintenance management, in which the outcome of an SD+MOO strategy selection process forms the basis for performance improvements on the operations level. This is achieved by framing the potential gains in operations in the DES+MOO study, as a result of the applied strategy in the SD model. All in all, this hybrid SBO framework allows pinpointing maintenance activities based on the analysis of the feedback behavior that generates less reactive load on the maintenance organization.

  • 363.
    Linnéusson, Gary
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Engineering Science.
    Aslam, Tehseen
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Engineering Science.
    Machine Strategy Evaluation Using Group Model Building in System Dynamics2014In: System Dynamics Society: Proceedings of the 32nd International Conference of the System Dynamics Society / [ed] Pål Davidsen and Etiënne A. J. A. Rouwette, 2014, p. 24 s.-Conference paper (Refereed)
    Abstract [en]

    Modeling projects, in order to build richer understanding of the dynamics of real-world

    phenomena in manufacturing systems, benefit from utilizing System dynamics group model

    building. This paper describes a project utilizing such method in order to identify the

    interrelated dynamics of aging machinery equipment, competence development, and level of

    automation for accurate manufacturing systems development. These central aspects were

    identified by the project group during modeling and were considered vital in order to

    approach the proper Machine Strategy for the system of interest. Aspects of attention in the

    study also considered participants’ learning of the system of interest, participants’

    perception upon model results, and the comparison between utilizing group model building

    and the traditional modeler-client approach. It is shown that System dynamics group model

    building has potential use in manufacturing, and indeed that more efforts are needed for

    successful use in projects. For that reason the need of a framework for supporting system

    dynamics projects in manufacturing is identified.

  • 364.
    Linnéusson, Gary
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Galar, Diego
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wickelgren, Mikael
    University of Skövde, School of Business. University of Skövde, Enterprises for the Future.
    A path forward: Systems thinking maintenance as part of shift in mind on added value2015In: / [ed] Sulo Lahdelma & Kari Palokangas, 2015Conference paper (Refereed)
    Abstract [en]

    Abstract: The purpose and novelty with this recently started research is the introduction of a modelling concept that aims to include the interdependencies maintenance have with financial figures, customer behavior, and production, using systems thinking. It suggests on a path forward in acknowledging short- and long term effects from maintenance on the production system and its financial results. Using systems thinking modelling enables learning on consequences from strategies and policies on the studied system; enabling evaluation of future scenarios supporting decision makers in defining sustainable strategies of action on the policy-level. This paper provides a brief outline of the thoughts behind the research project and points the direction for future research by first introducing aspects regarding the problem and possibilities to address, then briefly introduce different modelling approaches that in part address the problem, which is summarized into a path forward, and finally includes an example of a model by the author of a machine strategy problem that connects the physical assets and actions with financial costs.

  • 365.
    Linnéusson, Gary
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Galar, Diego
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Luleå University of Technology, Luleå, Sweden.
    Wickelgren, Mikael
    University of Skövde, School of Business. University of Skövde, Enterprises for the Future.
    In Need for Better Maintenance Cost Modelling to Support the Partnership with Manufacturing2016In: Current Trends in Reliability, Availability, Maintainability and Safety: An Industry Perspective / [ed] Uday Kumar, Alireza Ahmadi, Ajit Kumar Verma & Prabhakar Varde, Springer, 2016, 1, p. 263-282Conference paper (Other academic)
    Abstract [en]

    The problem of maintenance consequential costs has to be dealt with in manufacturing and is core of this paper. The need of sustainable partnership between manufacturing and maintenance is addressed. Stuck in a best practice thinking, applying negotiation as a method based on power statements in the service level agreement, the common best possible achievable goal is put on risk. Instead, it may enforce narrow minded sub optimized thinking even though not intended so. Unfortunately, the state of origin is not straightforward business. Present maintenance cost modelling is approached, however limits to its ability to address the dynamic complexity of production flows are acknowledged. The practical problem to deal with is units put together in production flows; in which downtime in any unit may or may not result in decreased throughput depending on its set up. In this environment accounting consequential costs is a conundrum and a way forward is suggested. One major aspect in the matter is the inevitable need of shift in mind, from perspective thinking in maintenance and manufacturing respectively towards shared perspectives, nourishing an advantageous sustainable partnership.

  • 366.
    Linnéusson, Gary
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Jägstam, Mats
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Kinnander, Anders
    Chalmers University of Technology.
    Bridging a Methodological Gap in Using System Dynamics in Manufacturing2009In: Proceedings of The International 3’rd Swedish Production Symposium, SPS’09 / [ed] B.-G. Rosén, The Swedish Production Academy , 2009, p. 19-26Conference paper (Refereed)
    Abstract [en]

    Development of manufacturing systems is dependent on human decision making. One important factor in the decision making process is the organisational ability to transform available information into useful knowledge. The ability is generally limited by the organisation's level of competence and use of methods. However, real systems are not simple and straightforward but dynamically complex and difficult to interpret in order to perform successful change. One tool for diagnosing and solving complex business problems is system dynamics. It is interesting for its capability to acknowledge dynamic complexity.

    This paper presents a framework of guidelines that facilitates implementing a system dynamics project for manufacturing systems development. It is the result of industrial case studies, supporting verification of the framework contents. This is presented in order to improve using system dynamics as a decision support in manufacturing. And it may bridge a gap between academic theory and industrial practice.

  • 367.
    Linnéusson, Gary
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Production Engineering and Production Preparation, Arkivator AB, Falköping, Sweden .
    Jägstam, Mats
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Näsström, C.
    Production Engineering and Production Preparation, Arkivator AB, Falköping, Sweden.
    Cutting Tool Management: A Dynamic Assessment of Opportunities for Improvement2008In: Proceedings of the 18th International Conference on Flexible Automation and Intelligent Manufacturing: FAIM 2008 / [ed] Leo J. de Vin, 2008, Vol. 2, p. 1084-1091Conference paper (Refereed)
    Abstract [en]

    Lack of time due to daily problems in need of attention restrains proper assessments of improvement opportunities. There is neither proper support at hand to deal with the dynamic complexity of human activity and systems in use. This paper explores if system dynamics simulation can be used to model tooling problems on a management problem level at a manufacturer and evaluates its use. System dynamics is a methodology designed to aid understanding of dynamically complex problems and increases decision making impact. The results focus on the achieved models which prove to have sense behaviour despite lack of thorough data. In conclusion the applied method provides with an analysis of complex problem situations applicable for a decision support, otherwise performed through good guessing. Main characteristics from reality have been included in model and an experimental laboratory to test future policies on achieved.

  • 368.
    Linnéusson, Gary
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Aslam, Tehseen
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Engineering Science.
    Investigating Maintenance Performance: A Simulation Study2016In: Proceedings of the 7th Swedish Production Symposium, 2016Conference paper (Refereed)
    Abstract [en]

    Maintenance can be performed in multiple procedures, and it is hard to justify investments in preventive work. It is a complex equation between the inherent complexity of maintenance and its tight dependencies with production, but also the aspect of direct cost and consequential costs from activities. A model is presented that quantify dynamics of maintenance performance in order to enable a systems analysis on the total of consequences from different strategies. Simulation offers experimenting and learning on how performance is generated. The model is based on parts of previous research on maintenance modelling, system dynamics, maintenance theory, and mapping of practical information flows in maintenance. Two experiments are presented that both take off from a reactive strategy of maintenance performance, and implement two different strategies for preventive maintenance. Using the model enriches the analysis on how the aspects of maintenance performance work together with different maintenance strategies.

  • 369.
    Linnéusson, Gary
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Aslam, Tehseen
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    A hybrid simulation-based optimization framework for supporting strategic maintenance to improve production performance2020In: European Journal of Operational Research, ISSN 0377-2217, E-ISSN 1872-6860, Vol. 281, no 2, p. 402-414Article in journal (Refereed)
    Abstract [en]

    Managing maintenance and its impact on business results is increasingly complex, calling for more advanced operational research methodologies to address the challenge of sustainable decision-making. This problem-based research has identified a framework of methods to supplement the operations research/management science literature by contributing a hybrid simulation-based optimization framework (HSBOF), extending previously reported research.

    Overall, it is the application of multi-objective optimization (MOO) with system dynamics (SD) and discrete-event simulation (DES) respectively which allows maintenance activities to be pinpointed in the production system based on analyzes generating less reactive work load on the maintenance organization. Therefore, the application of the HSBOF informs practice by a multiphase process, where each phase builds knowledge, starting with exploring feedback behaviors to why certain near-optimal maintenance behaviors arise, forming the basis of potential performance improvements, subsequently optimized using DES+MOO in a standard software, prioritizing the sequence of improvements in the production system for maintenance to implement.

    Studying literature on related hybridizations using optimization the proposed work can be considered novel, being based on SD+MOO industrial cases and their application to a DES+MOO software.

  • 370.
    Linnéusson, Gary
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Aslam, Tehseen
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Justifying Maintenance Studying System Behavior: A Multipurpose Approach Using Multi-objective Optimization2017In: 35th International Conference of the System Dynamics Society 2017: Cambridge, Massachusetts, USA 16 - 20 July 2017 / [ed] J. Sterman, N. Repenning, Curran Associates, Inc., 2017, Vol. 2, p. 1061-1081Conference paper (Refereed)
    Abstract [en]

    Industrial maintenance includes rich internaldynamic complexity on how to deliver value. While the technical development hasprovided with applicable solutions in terms of reliability and condition basedmonitoring, managing maintenance is still an act of balancing, trying to pleasethe short-termism from the economic requirements and simultaneously address thenecessity of strategic and long-term thinking. By presenting an analysis tojustify maintenance studying system behavior, this paper exemplifies thecontribution of the combined approach of a system dynamics maintenanceperformance model and multi-objective optimization. The paper reveals howinsights from the investigation, of the near optimal Pareto-front solutions inthe objective space, can be drawn using visualization of performance ofselected parameters. According to our analysis, there is no return back to thesingle use of system dynamics; the contribution to the analysis of exploringsystem behavior, from applying multi-objective optimization, is extensive.However, for the practical application, the combined approach is not areplacement – but a complement. Where the interpretation of the visualizedPareto-fronts strongly benefits from the understanding of the model dynamics, inwhich important nonlinearities and delays can be revealed, and thus facilitateon the selected strategical path for implementation.

  • 371.
    Linnéusson, Gary
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Jönköping University, School of Engineering, Sweden.
    Aslam, Tehseen
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Quantitative analysis of a conceptual system dynamics maintenance performance model using multi-objective optimisation2018In: Journal of Simulation, ISSN 1747-7778, E-ISSN 1747-7786, Vol. 12, no 2, p. 171-189Article in journal (Refereed)
  • 372.
    Linnéusson, Gary
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Jönköping University, Sweden.
    Aslam, Tehseen
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Relating strategic time horizons and proactiveness in equipment maintenance: a simulation-based optimization study2018In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 72, p. 1293-1298Article in journal (Refereed)
    Abstract [en]

    Identifying sustainable strategies to develop maintenance performance within the short-termism framework is indeed challenging. It requires reinforcing long-term capabilities while managing short-term requirements. This study explores differently applied time horizons when optimizing the tradeoff between conflicting objectives, in maintenance performance, which are: maximize availability, minimize maintenance costs, and minimize maintenance consequence costs. The study has applied multi-objective optimization on a maintenance performance system dynamics model that contains feedback structures that explains reactive and proactive maintenance behavior on a general level. The quantified results provide insights on how different time frames are conditional to enable more or less proactive maintenance behavior in servicing production.

  • 373.
    Linnéusson, Gary
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Aslam, Tehseen
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Towards strategic development of maintenance and its effects on production performance by using system dynamics in the automotive industry2018In: International Journal of Production Economics, ISSN 0925-5273, E-ISSN 1873-7579, Vol. 200, p. 151-169Article in journal (Refereed)
    Abstract [en]

    Managing maintenance within an economical short-termism framework, without considering the consequential long-term cost effect, is very common in industry. This research presents a novel conceptual system dynamics model for the study of the dynamic behaviors of maintenance performance and costs, which aims to illuminate insights for the support of the long-term, strategic development of manufacturing maintenance. By novel, we claim the model promotes a system's view of maintenance costs that include its dynamic consequential costs as the combined result of several interacting maintenance levels throughout the constituent feedback structures. These range from the applied combination of maintenance methodologies to the resulting proactiveness in production, which is based on the rate of continuous improvements arising from the root cause analyses of breakdowns. The purpose of using system dynamics is to support the investigations of the causal relationships between strategic initiatives and performance results, and to enable analyses that take into consideration the time delays between different actions, in order to support the sound formulation of policies to develop maintenance and production performances. The model construction and validation process has been supported by two large maintenance organizations operating in the Swedish automotive industry. Experimental results show that intended changes can have both short and long-term consequences, and that obvious and hidden dynamic behavioral effects, which have not been reported in the literature previously, may be in the system. We believe the model can help to illuminate the holistic value of maintenance on the one hand and support its strategic development as well as the organizational transformation into proactiveness on the other.

  • 374.
    Liu, Yu
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Syberfeldt, Anna
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Strand, Mattias
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    A Review of Simulation Based Life Cycle Assessment in Manufacturing Industry2018In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11 – 13, 2018, Skövde, Sweden / [ed] Peter Thorvald, Keith Case, Amsterdam, Berlin, Washington,DC: IOS Press, 2018, Vol. 8, p. 381-386Conference paper (Refereed)
    Abstract [en]

    The manufacturing industry has a duty to minimize their environmental impact and more and more legislations include environmental impact evaluations from a life cycle perspective to avoid burden shift. Current manufacturing industry increase their use of computer-based simulations for optimizing production processes. In recent years, a number of studies have been published, combining simulations with life cycle assessments (LCA), to evaluate and minimize the environmental impact of production activities, as part of improving the production processes. Still, current knowledge concerning simulations for LCA is rather scattered. Therefore, this paper reviews relevant literature covering simulation based LCA for production development. The results of the review and cross comparison of papers are structured following the 6 categories in line with the ISO standard definition of LCA (goal formulation, scope definition, environmental impact assessment, data quality, level of modelling details, and model validation) and report the strengths and constraints of the reviewed studies. 

  • 375.
    Liu, Yu
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Syberfeldt, Anna
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Strand, Mattias
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Review of simulation-based life cycle assessment in manufacturing industry2019In: Production & Manufacturing Research, ISSN 2169-3277, Vol. 7, no 1, p. 490-502Article in journal (Refereed)
    Abstract [en]

    The manufacturing industry has a duty to minimize its environmental impact, and an increasing body of legislation mandates environmental impact evaluations from a life cycle perspective to prevent burden shift. The manufacturing industry is increasing its use of computer-based simulations to optimize production processes. In recent years, several published studies have combined simulations with life cycle assessments (LCAs) to evaluate and minimize the environmental impact of production activities. Still, current knowledge of simulations conducted for LCAs is rather disjointed. This paper accordingly reviews the literature covering simulation-based LCAs of production processes. The results of the review and cross-comparison of papers are structured in terms of seven elements in line with the ISO standard definition of LCA and report the strengths and limitations of the reviewed studies. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

  • 376.
    Liu, Yu
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Syberfeldt, Anna
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Urenda Moris, Matías
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Jägstam, Mats
    Jönköping University, School of Engineering, Jönköping, Sweden.
    Jenny, Everbring
    Volvo Group, Advanced Technology & Research, Gothenburg, Sweden.
    Kloo, Henrik
    Volvo Group, Advanced Technology & Research, Gothenburg, Sweden.
    Evaluating environmental impacts of production process by simulation based life cycle assessment2016In: Proceedings of the 7th Swedish Production Symposium, 2016Conference paper (Refereed)
    Abstract [en]

    Historically, the manufacturing industry is one of the main contributors to the environmental issues. With conservation of the environment becoming more and more critical for survival, it is of importance for the manufacturing industry to take responsibility for minimizing their productions’ environmental impacts. Life cycle assessment has been widely used in the product’s development phase within the manufacturing industry. However, the environmental impacts that come from various dynamic manufacturing processes are only estimated with large uncertainty. Some studies have suggested that the combination of life cycle assessment and production flow simulation is an appropriate approach to address the environmental impacts from the manufacturing processes. Nevertheless, these studies are often limiting their concerns to the limited life cycle phases or certain environmental impacts. This study proposes a framework regarding how to develop a method for evaluating and identifying improvements that help reduce the life-cycle environmental impacts of complex production processes. In addition, this work employs a simplified case study to demonstrate the proposed framework. 

  • 377.
    Lundell, Björn
    et al.
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Lings, Brian
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Syberfeldt, Anna
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Open source software in complex domains: Current perceptions in the embedded systems area2008In: Proceedings of the Fourteenth Americas conference on Information Systems, AMCIS 2008, AIS Electronic Library (AISeL) , 2008, p. 3449-3455Conference paper (Refereed)
    Abstract [en]

    With Nokia´s 770 and N800 Internet Tablets heavily utlilising Open Source software, it is timely to ask whether - and if so to what extent - Open Source has made ingress into complex application domains such as embedded systems. In this paper we report on a qualitative study of perceptions of Open Source software in the secondary software sector, and in particular companies deploying embedded software. Although the sector is historically associated in Open Source software studies with uptake of embedded Linux. we find broader acceptance. The level of reasoning about Open Source quality and trust issues found was commensurate with that expressed in the literature. The classical strengths of Open Source, namely mass inspection, ease of conducting trials, longevity and source code access for debugging, were at the forefront of thinking. However, there was an acknowledgement that more guidelines were needed for assessing and incorporating Open Source software in products.

  • 378.
    Lundell, Björn
    et al.
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Lings, Brian
    Certus Technology Associates, UK.
    Syberfeldt, Anna
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Practitioner perceptions of Open Source software in the embedded systems area2011In: Journal of Systems and Software, ISSN 0164-1212, E-ISSN 1873-1228, Vol. 84, no 9, p. 1540-1549Article in journal (Refereed)
    Abstract [en]

    There is a growing body of research to show that, with the advent of so-called professional Open Source, attitudes within many organisations towards adopting Open Source software have changed. However, there have been conflicting reports on the extent to which this is true of the embedded software systems sector--a large sector in Europe. This paper reports on attitudes towards Open Source software within that sector. Our results show a high level of acceptance of Open Source products with large, well established communities, and not only at the level of the operating system. Control over the software is seen as fundamentally important. Other key perceptions with Open Soure are an easing of long-term maintenance problems and ready availability of support. The classical strenghts of Open Source, namely mass inspection, ease of conducting trials, longevity and source code access for debugging, were at the forefront of thinking. However, there was an acknowledgement that more guidelines are needed for accessing Open Source software and incoprporating it into products.

  • 379.
    Lundström, Daniel
    et al.
    Loughborough University.
    Case, Keith
    Loughborough University.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Anthropometric rigging for variable manikin appearance2010In: Advances in manufacturing technology - XXIV: Proceedings of the 8th International Conference on Manufacturing Research (ICMR2010), 14th-16th September 2010 / [ed] V. I. Vitanov, D. Harrison, School of Engineering and Computing Sciences ; Glasgow Caledonian University , 2010, p. 250-255Conference paper (Refereed)
    Abstract [en]

    DHM  (Digital  Human  Modeling)  tools  have  increasingly  become  a  contributor  to  human  factors  engineering and user-centered design. Sources report however that little attention has been paid to the appearance of DHM virtual human models, i.e. manikins. Aspects of visual appearance have considerable impact on conveying beliefs and attitudes, something often used in industrial design to motivate solutions. This work aims to fuse the need of correct anthropometric representation in DHM with the artistic freedom available in visual art industries and  address the need of more humanlike appearances of manikins.

  • 380.
    Lättilä, Lauri
    et al.
    Lappeenranta University of Technology.
    Hilletofth, Per
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Lin, Bishan
    Louisiana State University in Shrevenport.
    Hybrid simulation models - When, Why, How?2010In: Expert systems with applications, ISSN 0957-4174, E-ISSN 1873-6793, Vol. 37, no 12, p. 7969-7975Article in journal (Refereed)
    Abstract [en]

    Agent-Based Modeling and Simulation (ABMS) and System Dynamics (SD) are two popular simulation paradigms. Despite their common goal, these simulation methods are rarely combined and there has been a very low amount of joint research in these fields. However, it seems to be advantageous to combine them to create more accurate hybrid models. In this research, the possible ways to combine these methods are studied. The authors have found five different situations where it will be useful to combine these methods. All of them have already been used in earlier studies, so modelers should use them as possible interfaces to combine the methodologies. By using hybrid simulation models it is possible to create more accurate and reliable Expert Systems (ES).

  • 381.
    Ma, Ji
    et al.
    Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
    Feng, Hsi-Yung
    Department of Mechanical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Delaunay-Based Triangular Surface Reconstruction from Points via Umbrella Facet Matching2010In: Proceedings of the 6th IEEE Conference on Automation Science and Engineering, IEEE conference proceedings, 2010, p. 580-585Conference paper (Refereed)
    Abstract [en]

    This  paper  presents  an  effective  algorithm  to reconstruct  a  closed  3D  triangular  surface  mesh  from  a  set of unorganized points based on Delaunay triangles. The algorithm essentially  seeks  to  construct  an  optimal  local  2D  manifold surface  (umbrella)  at  each  individual  point  in  parallel.  The underlying principle is that for any point, there always exists a cluster of triangular facets, selected from the Delaunay triangles at the point, to constitute the shape of an opened umbrella. If a triangular  facet  belongs  to  all  three  umbrellas  of  its  three vertices,  the  triangular  facet  is  considered  as a  matched  facet. When all triangular facets of an umbrella are matched facets, the  umbrella  is  regarded  as  a  matched  umbrella  which  fully overlaps with its neighboring umbrellas. A topologically correct triangular surface mesh is then constructed when the matched umbrella  for  every  individual  point  is  found.  The  proposed Umbrella    Facet    Matching    (UFM)    algorithm    has    been implemented and validated using many publicly available point cloud data sets. The algorithm is seen to be of good convergence and  without  the  need  for  further  hole-filling  post-processing. And the reconstructed surface meshes only contain minor shape approximation errors, when compared to the original surfaces of the sampled points.

  • 382.
    Mahdavian, Nafise
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Development and Evaluation of Digital Ergonomics Tools to Assess Human Work in Real and Virtual Environments: Based on case studies of manual assembly in Swedish automotive companies2018Report (Other academic)
    Abstract [en]

    ‘Digital ergonomics tools’ is a term used in this research proposal to refer to tools that are used to assess human work in real and virtual environments, where ‘digital’ refers to the use of technology such as computers, sensors, simulation, and data processing, to achieve desired functionality and usability. Digital ergonomics tools are considered as part of the ‘digital factory’. In essence the digital factory is an advanced computer model that either represents a non-yet existing factory, or an existing factory. When the factory is realised, there is an information flow between the real and the digital factory. The digital factory can be used to be informed about status of running production, and to support product and manufacturing development activities to test different design scenarios in the digital model before realising the selected solutions in the real factory. Hence, the digital factory approach assists designers, engineers, ergonomists, and managers to get a better understanding of the current status of the factory, and offers a digital model for testing and deciding upon different design alternatives. In an ergonomics context, such status checks can be related to assessing current ergonomics loads of the work force, or related to ensuring appropriate ergonomics when workstations are introduced or modified due to new product type introductions. However, there is a need to develop and evaluate digital ergonomics tools that has the desired functionality and usability to be integrated in to the digital factory concept. This proposed research addresses those needs.

    The research contributes to advance knowledge about technology and methods for the assessment of human work in real and virtual environments. The research will be carried out in association with development and evaluation research projects in the area of digital ergonomics tools, such as digital human modelling (DHM) tools and smart workwear. Simulation and experiment based strategies will be used to gather data and extract new knowledge. The studies will be carried out both in simulation and laboratory environments at the University, as well as in case studies in manual assembly in Swedish automotive companies.

  • 383.
    Mahdavian, Nafise
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Lind, Carl Mikael
    Unit of Occupational medicine, Karolinska Institutet, Stockholm, Sweden / Division of Ergonomics, KTH Royal Institute of Technology, Huddinge, Sweden.
    Diaz Olivares, Jose Antonio
    Division of Ergonomics, KTH Royal Institute of Technology, Huddinge, Sweden.
    Iriondo Pascual, Aitor
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Brolin, Erik
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Yang, Liyun
    Unit of Occupational medicine, Karolinska Institutet, Stockholm, Sweden / Division of Ergonomics, KTH Royal Institute of Technology, Huddinge, Sweden.
    Forsman, Mikael
    Unit of Occupational medicine, Karolinska Institutet, Stockholm, Sweden / Division of Ergonomics, KTH Royal Institute of Technology, Huddinge, Sweden.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Scania CV, Södertälje, Sweden.
    Effect of Giving Feedback on Postural Working Techniques2018In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, 2018, University of Skövde, Sweden / [ed] Peter Thorvald, Keith Case, Amsterdam, Netherlands: IOS Press, 2018, p. 247-252Conference paper (Refereed)
    Abstract [en]

    Working postures and movements affect work efficiency and musculoskeletal health. To reduce the biomechanical exposure in physically demanding settings, working techniques may be improved by giving instant ergonomic feedback to the operator. This study investigates if feedback can be used to decrease adverse postures and movements in assembly work. A prototype solution of a smart textile workwear was used on a trainee assembly line. Posture and movement signals of 24 trainee operators were sampled via the workwear, transferred to a tablet for analyses and used to provide feedback suggesting improvements of work technique. Two modes of feedback were tested. Every participant’s work technique was measured before and after receiving the feedback and the results were compared. For upper arm elevation angle ≥60, behaviour change is indicated, supporting a positive work technique change, and indicated a future usefulness of technical automatic feedback for operators.

  • 384.
    Mahdavian, Nafise
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ruiz Castro, Pamela
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Brolin, Erik
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Industrial Development, Scania, Södertälje, Sweden.
    Digital human modelling in a virtual environment of CAD parts and a point cloud2017In: Proceedings of the 5th International Digital Human Modeling Symposium / [ed] Sascha Wischniewski & Thomas Alexander, Federal Institute for Occupational Safety and Health , 2017, p. 283-291Conference paper (Refereed)
    Abstract [en]

    Manual assembly is a time and cost consuming phase of production. It is crucial to design the assembly process so that overall system efficiency, quality output and human well-being meet desired levels. Since manual assembly involve humans, one support in the production design process is to use digital human modelling (DHM) tools to model and assess different design scenarios prior to the actual production process. In the traditional way, various CAD tools are used by engineers to model the production layout and the workstations. Then, these models typically are imported into a DHM tool to simulate human work, and to apply ergonomic evaluation methods on the simulated work tasks. This work, supported by CAD and DHM, can be a time consuming and iterative process as precise information and measurements of the actual assembly environment are needed, e.g. related to actual geometries of factory premises or of facilities surrounding the workstations. However, introducing point cloud scanning technology can provide the user with a more correct and realistic virtual representation of the environment, which allows for a faster and more precise design process.The aim of this paper is to present the developments and capabilities of the DHM tool IPS IMMA (Intelligently Moving Manikins) in an assembly process and in a virtual environment provided by point cloud scanning.

  • 385.
    Mao, Jin
    et al.
    Department of Mechanical Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
    Xu, Xun
    Department of Mechanical Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Newman, Stephen
    Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, United Kingdom.
    A Statistic Review of Computer-Aided Process Planning Research2010In: Proceedings of the ASME 2010 International Manufacturing Science and Engineering Conference: Volume 2, ASME Press, 2010, p. 513-531Conference paper (Refereed)
    Abstract [en]

    Since  the  late  1970’s,  computer-aided  process  planning  (CAPP)  has attracted a large amount of research interest, which has led to a huge volume   of   literature   published   on   this   subject.   The   literature encompasses  both  reviews  and  research  articles.  The  review  articles are mostly technologically oriented. This paper takes a different angle to  look  back  the  CAPP  research,  that  is,  a  statistic  approach.  The paper analyses the journals that have been publishing CAPP research works.    The concept of “Subject Strength” of a journal is introduced and  used  to  gauge  the  level  of  focus  of  a  journal  on  a  particular research  subject/domain,  i.e.  CAPP.  Discussions  about  the  recent CAPP research works are presented in different categories as they fall in. The term “Technology Impact Factor (TIF)” is introduced to assess the  level  of  impact  of  a  particular  technology,  in  terms  of  citation counts.    All  discussions  and  analyses  are  carried  out  based  on  the data   gathered   from   the   Elsevier’s   Scopus   abstract   and   citation database. Finally, a discussion on the future development is presented. The literature suggests that this is the only review article of the similar nature in the first decade of the century.

  • 386.
    Mao, Junjie
    et al.
    School of Software, Shanghai Jiao Tong University, Shanghai, China.
    Cai, Hongming
    School of Software, Shanghai Jiao Tong University, Shanghai, China.
    Wang, Wei
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Huang, Chengxi
    School of Software, Shanghai Jiao Tong University, Shanghai, China.
    Chen, Fengming
    Department of Information, Shanghai Waigaoqiao Shipbuilding Co, Ltd Shanghai, China.
    Xu, Boyi
    School of Economics & Management, Shanghai Jiao Tong University Shanghai, China.
    A Web of Things Based Device-adaptive Service Composition Framework2016In: 2016 IEEE 13th International Conference on e-Business Engineering (ICEBE), IEEE, 2016, p. 40-47Conference paper (Refereed)
    Abstract [en]

    In WoT environment, smart things provide RESTful services to expose their resources and operations. There are a large number of smart things that offer the same functionalities but have different service interfaces. Because of the high coupling between device service instances and process specifications like BPEL, the cost of reusing a BPEL specification between different device environments could be extremely high. We propose a device-adaptive service composition framework for WoT environment, in order to help users to apply the business process and service composition technologies more conveniently. In the framework, we design an activity description model, which is a semantic description for business activities, to overcome the shortcoming of directly binding the process and the service. Then, a matching mechanism between the model and the WADL of device services is proposed to select candidate services for the composition. Furthermore, we represent the matching result in a logical composition model, with which the source code of a general service can be automatically generated. The general service is a unified encapsulation for device services that match the functionalities of business activity. So user can interact with the general service instead of the origin services on the device, which decouples the process specification and the actual device services. A case study is offered to illustrate how to apply our framework in an intelligent charging pile sharing platform.

  • 387.
    Marzi, Stephan
    et al.
    Fraunhofer IFAM, Bremen, Germany.
    Biel, Anders
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hesebeck, Olaf
    Fraunhofer IFAM, Bremen, Germany.
    3D optical displacement measurements on dynamically loaded adhesively bonded T-peel specimens2015In: International Journal of Adhesion and Adhesives, ISSN 0143-7496, E-ISSN 1879-0127, Vol. 56, p. 41-45Article in journal (Refereed)
    Abstract [en]

    Adhesively bonded T-Peel specimens are loaded in a rotary impact device to investigate the behaviour of adhesive joints under high-strain rates. To gain a better understanding of that kind of tests and their results, the deformation of the samples as well as the movement of specimen support during the test is analyzed. A three-dimensional optical measurement system is used in combination with two synchronized high-speed cameras to obtain the deformations. The paper explains the experimental challenges and discusses the results of the analyses with respect to a planned usage of the experimental results in a finite element crash simulation. As main results of the investigations it can be summarized that the compliant clamping leads to an inadvertent out-of-plane-movement of the load introduction point. Based on finite element calculations it can be concluded that the measured out-of-plane-movement possesses a negligible influence on the obtained force signal, which is of primary interest in a T-Peel test.

  • 388.
    Marzi, Stephan
    et al.
    Fraunhofer IFAM, Bremen, Germany.
    Hesebeck, Olaf
    Fraunhofer IFAM, Bremen, Germany.
    Brede, Markus
    Fraunhofer IFAM, Bremen, Germany.
    Nagel, Christof
    Fraunhofer IFAM, Bremen, Germany.
    Biel, Anders
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Walander, Tomas
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Stigh, Ulf
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Effects of the bond line thickness on the fracture mechanical behaviour of structural adhesive joints2014In: Proceedings of the Annual Meeting of the Adhesion Society 2014, Adhesion Society , 2014, p. 189-192Conference paper (Refereed)
  • 389.
    Marzi, Stephan
    et al.
    Fraunhofer IFAM, Germany.
    Walander, Tomas
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hesebeck, Olaf
    Fraunhofer IFAM, Germany.
    Brede, Markus
    Fraunhofer IFAM, Germany.
    A Controlled Mixed-Mode Bending (CMMB) test to investigate the fracture of structural adhesive joints2014Conference paper (Refereed)
    Abstract [en]

    A so called Controlled Mixed-Mode Bending (CMMB) test is presented, which has been developed toinvestigate the fracture of crash-optimized, elastic-plastic adhesives loaded in mixed-mode. While mostcommon mixed-mode tests, like e.g. the MMB test, work fine with brittle adhesives, the controlled MMBtakes into account the large crack opening displacements at the crack tip and ensures a constant mode mixat the crack tip by the regulation of two actuators. Consequently, the definition of mode mixity is asignificant difference to state-of-the-art experiments, which define the mode mixity in terms of the ratio ofdissipated energy in the single modes and which are therefore based on analytical models or assumptionsconcerning the energy dissipation during the test. A further target of the presented CMMB test is to obtain information on the complete shape of the socalled traction separation law, which describes the relation between stress and displacement inside theadhesive layer. Such traction separation law is often used to define the failure behaviour of an adhesivejoint within a numerical analysis, using cohesive elements in a finite element code or similar approaches. Beside the theory and the idea of the CMMB test, experimental results for the adhesive SikaPower 498 arepresented and deeply discussed with respect to difficulties and limitations of the proposed method and therealized experimental setup.

  • 390.
    Mattsson, Sandra
    et al.
    Chalmers University of Technology.
    Fast-Berglund, Åsa
    Chalmers University of Technology.
    Li, Dan
    Chalmers University of Technology.
    Thorvald, Peter
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Forming a cognitive automation strategy for Operator 4.0 in complex assembly2018In: Computers & industrial engineering, ISSN 0360-8352, E-ISSN 1879-0550Article in journal (Refereed)
    Abstract [en]

    Due to today’s technological advances in the area of Industry 4.0, having a strategy for cognitive automation solutions is crucial. Operator 4.0, will have handle and manage different work tasks ranging from learning new tasks to solving difficult problems and initiate changes. To support the operator moving between these tasks a strategy for the design of cognitive automation solutions is needed. The suggested strategy has three steps: 1) select assembly phases, 2) choose level of cognitive automation carrier and 3) suggest cognitive automation content. It is important that the operator is part of the design and that the solution supports movement between the phases learning, operational and disruptive phases. The strategy could support manufacturing companies meeting challenges regarding social sustainability e.g. stress, attractive workplaces and demography changes as well as system transparency and complexity.

  • 391.
    Mattsson, Sandra
    et al.
    Chalmers University of Technology, Gothenburg, Sweden.
    Fast-Berglund, Åsa
    Chalmers University of Technology, Gothenburg, Sweden.
    Thorvald, Peter
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    A Relationship Between Operator Performance and Arousal in Assembly2016In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 44, p. 32-37Article in journal (Refereed)
    Abstract [en]

    In order to meet the challenges of future complex systems, manufacturing companies need to better understand how social sustainability affects the operator. One way of studying this is to investigate the possible relationships between operator performance and emotion in an assembly experiment. 60 participants took part in an experiment to investigate the relationships between operator performance and objective and subjective arousal. Results showed a weak relationship between operator performance and objective arousal but no significant relationship was found between performance and subjective arousal. The relationships indicate that further studies on operator emotion could be important to better assembly performance. A tool for doing this might be the Qsensor used in this experiment (measure of objective arousal). More studies are needed to further investigate found relationship and if objective emotion measures can be used to predict performance at assembly workstations.

  • 392.
    Mendoza, Ana Isabel
    et al.
    KTH-Royal Institute of Technology, Fibre and Polymer Technology, Stockholm, Sweden.
    Moriana, Rosana
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. KTH-Royal Institute of Technology, Fibre and Polymer Technology, Stockholm / SLU-Swedish University of Agricultural Sciences, Uppsala, Sweden.
    Hillborg, Henrik
    ABB-Corporate Research, Power Technology, Västerås, Sweden.
    Strömberg, Emma
    KTH-Royal Institute of Technology, Fibre and Polymer Technology, Stockholm, Sweden.
    Super-hydrophobic zinc oxide/silicone rubber nanocomposite surfaces2019In: Surfaces and Interfaces, ISSN 2468-0230, Vol. 14, p. 146-157Article in journal (Refereed)
    Abstract [en]

    This study presents comparative assessments on hydrophilic and hydrophobic ZnO nanoparticles and their deposition methods on the surface hydrophobicity of silicone rubber (PDMS) and glass substrates. The influence on the surface hydrophobicity and wettability of all the variables regarding the deposition methodologies and the interaction of the nanoparticles with the substrates were within the scope of this study. The different surfaces created by spraying, dipping and drop-pipetting deposition methods were assessed by static contact angle measurements and contact angle hysteresis from advancing and receding angles, as well as by the calculation of the sliding angle and the surface energy parameters. An accurate methodology to determine the contact angle hysteresis was proposed to obtain repetitive and comparative results on all surfaces. All the measurements have been correlated with the morphology and topography of the different surfaces analysed by FE-SE microscopy. The spray-deposition of hydrophobic ZnO nanoparticles on PDMS resulted in super-hydrophobic surfaces, exhibiting hierarchical structures with micro-and nanometer features which, together with the low surface energy, promotes the Cassie-Baxter wetting behavior. This study provides the fundamental approach to select critically the most promising combination in terms of materials and deposition techniques to create silicone-based super-hydrophobic surfaces with potential to be applied in high voltage outdoor insulation applications.

  • 393.
    Mohammed, Abdullah
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Givehchi, Mohammad
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Interfacing Image Processing with Robotic Sketching2012In: Proceedings of the FAIM 2012, 22nd International Conference on Flexible Automation and Intelligent Manufacturing, June 10th-13th, 2012, Helsinki, Finland / [ed] Hasse Nylund, Satu Kantti, Ville Toivonen & Seppo Torvinen, Tampere: Tampere University of Technology, 2012, p. 285-294Conference paper (Refereed)
    Abstract [en]

    In attempt to have a flexible manufacturing environment with adaptive control systems, several researchers tend to integrate vision systems into the industrial systems to achieve that objective; the majority of the research works that have been done in this perspective tend to keep this kind of integration fully automated. Along the same direction, this paper presents an approach for integrating Robotic Sketching and Path Planning with Image Processing, and it introduces at the same time the ability for operators to remotely control and monitor the processing stages. It has been accomplished using network based architecture consisting of a vision system together with a server, a client and an ABB industrial robot. The aims of this paper are: (1) to provide an example that illustrates the benefit of interfacing the image processing techniques with the industrial shop floor system, and (2) to develop a web based system that allows an operator to remotely monitor and control the stages of the application using Java based applet. Further analyses have been done for the processing times of the application; this helped us to address the problem that consumed the largest proportion of the processing time. The work that has been done in this research provides additional supervision ability for the integrated system, and it demonstrates some of the challenges and the obstacles that may face this kind of integration.

  • 394.
    Mohammed, Abdullah
    et al.
    Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Schmidt, Bernard
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Active collision avoidance for human-robot collaboration driven by vision sensors2017In: International journal of computer integrated manufacturing (Print), ISSN 0951-192X, E-ISSN 1362-3052, Vol. 30, no 9, p. 970-980Article in journal (Refereed)
    Abstract [en]

    Establishing safe human-robot collaboration is an essential factor for improving efficiency and flexibility in today's manufacturing environment. Targeting safety in human-robot collaboration, this paper reports a novel approach for effective online collision avoidance in an augmented environment, where virtual three-dimensional (3D) models of robots and real images of human operators from depth cameras are used for monitoring and collision detection. A prototype system is developed and linked to industrial robot controllers for adaptive robot control, without the need of programming by the operators. The result of collision detection reveals four safety strategies: the system can alert an operator, stop a robot, move away the robot, or modify the robot's trajectory away from an approaching operator. These strategies can be activated based on the operator's existence and location with respect to the robot. The case study of the research further discusses the possibility of implementing the developed method in realistic applications, for example, collaboration between robots and humans in an assembly line.

  • 395.
    Mohammed, Abdullah
    et al.
    Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Schmidt, Bernard
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Energy-Efficient Robot Configuration for Assembly2017In: Journal of manufacturing science and engineering, ISSN 1087-1357, E-ISSN 1528-8935, Vol. 139, no 5, article id 051007Article in journal (Refereed)
    Abstract [en]

    Optimizing the energy consumption of robot movements has been one of the main focuses for most of today's robotic simulation software. This optimization is based on minimizing a robot's joint movements. In many cases, it does not take into consideration the dynamic features. Therefore, reducing energy consumption is still a challenging task and it involves studying the robot's kinematic and dynamic models together with application requirements. This research aims to minimize the robot energy consumption during assembly. Given a trajectory and based on the inverse kinematics and dynamics of a robot, a set of attainable configurations for the robot can be determined, perused by calculating the suitable forces and torques on the joints and links of the robot. The energy consumption is then calculated for each configuration and based on the assigned trajectory. The ones with the lowest energy consumption are selected. Given that the energy-efficient robot configurations lead to reduced overall energy consumption, this approach becomes instrumental and can be embedded in energy-efficient robotic assembly.

  • 396.
    Mohammed, Abdullah
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Schmidt, Bernard
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Remote monitoring and controlling for robotic path following operations2012In: Proceedings of the SPS12 conference 2012, The Swedish Production Academy , 2012, p. 27-33Conference paper (Refereed)
    Abstract [en]

    Controlling a robot's movement requires a prior knowledge about the needed path and configurations to accomplish the movement. The lack of this knowledge causes limitations in the robot's adaptability in dynamic environments. The objectives of this paper are: (1) to improve the ability of the robot to follow any arbitrary path defined by an operator, and (2) to provide the ability for an authorized distant operator to access the system for monitoring and controlling both the robot and the stages of the process. The system developed in this research consists of a calibrated network camera, an industrial robot and an application server. The process starts by having a sketch drown by an operator representing the paths that the robot needs to follow, then the operator can remotely take a snapshot of the paths and retrieve the contours that represent the paths; after that the system sends them to the robot controller to perform the task of path following. The results have shown that the system can perform the required task within a relatively short time and with a reasonable level of quality. This research proves that it is possible to build an adaptive robotic system that can follow efficiently any arbitrary path without the need for defining it in advance.

  • 397.
    Mohammed, Abdullah
    et al.
    Department of Production Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Schmidt, Bernard
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Department of Production Engineering Royal Institute of Technology 100 44 Stockholm, Sweden.
    Gao, Liang
    Huazhong University of Science and Technology, Hubei, China.
    Minimizing Energy Consumption for Robot Arm Movement2014In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 25, p. 400-405Article in journal (Refereed)
    Abstract [en]

    Robots are widely used in industry due to their efficiency and high performance. Many of them are operating in the manufacturing stage of the production line where the highest percentage of energy is consumed. Therefore, their energy consumption became a major focus for many robots manufacturers and academic research groups. Nevertheless, the optimisation of that consumption is still a challenging task which requires a deep understanding of the robot’s kinematic and dynamic behaviours. This paper proposes an approach to develop an optimisation module using Matlab® to minimise the energy consumptions of the robot’s movement. With the help of Denavit-Hartenberg notation, the approach starts first by solving the inverse kinematics of the robot to find a set of feasible joint configurations required to perform the task, solving the inverse kinematics is usually a challenging step which requires in-depth analyses of the robot. The module then solves the inverse dynamics of the robot to analyse the forces and torques applied on each joint and link in the robot. Furthermore, a calculation for the energy consumption is performed for each configuration. The final step of the process represents the optimisation of the calculated configurations by choosing the one with the lowest power consumption and sends the results to the robot controller. Three case studies are used to evaluate the performance of the module. The experimental results demonstrate the developed module as a successful tool for energy efficient robot path planning. Further analyses for the results have been done by comparing them with the ones from commercial simulation software. The case studies show that the optimisation of the location for the target path could reduce the energy consumption effectively.

  • 398.
    Mohammed, Abdullah
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Gao, Robert X.
    Department of Mechanical Engineering, University of Connecticut, Storrs, CT, USA.
    Integrated Image Processing and Path Planning for Robotic Sketching2013In: Eighth CIRP Conference on Intelligent Computation in Manufacturing Engineering / [ed] Roberto Teti, Elsevier, 2013, Vol. 12, p. 199-204Conference paper (Refereed)
    Abstract [en]

    Since the beginning of the development of machine vision, researchers have realized its importance in the robotics field, as it provides a useful tool for both the environment detection and decision making during the automation process. At the same time, path planning for robots influences many in the robotics and automation field and it has remained active for both methodology research and system implementation. This research combines machine vision with robot path planning with an aim of programming-free robotic applications. Particularly as a proof of concept, a programming-free robotic sketching prototype is developed as a case study. Within the context, this paper consists of three parts. The first part covers the processing of a facial image taken by a webcam to identify the contours that represent the image; the second part converts these contours to paths for an industrial robot to follow; and the third part controls the robot adaptively for sketching including auto-generation of control codes and self-calibration. The developed prototype is a closed-loop system with networked camera and robot. Intelligent computation is applied to identify the contours of the image with minimum representation of points and with the correct sequence of points for each curve (path); the sequence of the output robot paths represents the near-optimal sequence to preserve the minimum travelling time for the robot. The robot control module can also retrieve the TCP of the robot for off-site monitoring. The ultimate goal of this research is future applications of robot path following, e.g. ad-hoc robotic cutting or welding where the paths can be specified by hand-drawings of an operator on the target workpiece with zero programming for the operator.

  • 399.
    Moore, P. R.
    et al.
    De Montfort Univ, Mechatron Res Grp, Leicester LE1 9BH, Leics, England.
    Ng, Amos
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Yeo, S. H.
    De Montfort Univ, Mechatron Res Grp, Leicester LE1 9BH, Leics, England.
    Sundberg, Martin
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Wong, C. B.
    De Montfort Univ, Mechatron Res Grp, Leicester LE1 9BH, Leics, England.
    De Vin, Leo
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Advanced machine service support using Internet-enabled three-dimensional-based virtual engineering2008In: International Journal of Production Research, ISSN 0020-7543, E-ISSN 1366-588X, Vol. 46, no 15, p. 4215-4235Article in journal (Refereed)
    Abstract [en]

    In the era of globalization, one of the key factors for manufacturing machine builders/suppliers to remain competitive is their capability to provide cost-effective and comprehensive machine service and maintenance for their clients at anytime, anywhere. Previous research has highlighted the role of virtual engineering tools in the design and development life cycle of manufacturing machinery systems. Virtual engineering models created during the development phase can potentially be used to provide valuable functions for many other tasks during the operational phase, including service and maintenance support. This paper introduces an innovative Internet-enabled three-dimensional-based virtual engineering framework that can be used for such purposes. Specifically, it addresses a system architecture that is designed to facilitate the tight integration between virtual engineering tools and a set of Internet-based reconfigurable modular maintenance supporting tools. This system architecture has been verified by implementations using different toolsets atop of various Internet technologies (e.g. XML Web services and LabView's Datasocket). Implementation details and successful industrial-based test cases are also provided in this paper.

  • 400.
    Morshedzadeh, Iman
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Extended Product lifecycle management with knowledge management: Research Proposal2016Report (Other academic)
    Abstract [en]

    Anything that is produced and offered to the markets can be a product. Each product has a lifecycle, whether the product is a car or a software program or a service. Product lifecycle has different phases from the time that it is raised as business idea at the first phase to disposal as the last stage. Product lifecycle management is a business approach for management and the use of product, process and resource related data, information and knowledge. With this management, enterprises try to use their company’s intellectual capitals. The initial PLM systems had been developed to store and manage Computer Aided Design (CAD) files and giving access to these data in different stage of the product lifecycle for users. Afterward, PLM systems, more developed to cover the management of process and resource data, and later on, managing of product related data, information and knowledge on all phases of product lifecycle. Each enterprise, according to its needs and competencies, implementing and using different capabilities of PLM systems, but still Bill of Material (BoM), Bill of Process (BoP) and Bill of resource (BoR) are forming the core of PLM systems. PLM systems try to manage data by integration with other engineering software programs to import data from them and manage those data for exporting to other software programs or makes them accessible for users. These integrations cause the managing of virtual data and information by the PLM systems, which are generated by different engineers such as designers or manufacturing engineers. CAD files and simulations are two types of virtual data. These data consist of some knowledges that had been generated by different engineers, which can be called virtual knowledge.Real World Knowledge is another type of knowledge that are exist in the enterprises. This knowledge can be captured from the happenings in the real environment such as failure reports, quality and audit reports, product performance, production data and operator’s experiences. Sometimes capturing these knowledges is very easy for example production throughput, but sometimes it is very hard, because they are unwritten and uncodified.Capturing and managing these real world knowledges, can help manufacturers to reduce their costs by making a better decisions and reusing of virtual models.Firstly these knowledges can clarify consequences and of previous decisions. They can also clarify some hidden and unconsidered issues about decision cases. The Real World Knowledge covers different types of knowledge, such as production reports, maintenance reports or operator experience.Secondly, the real world knowledge, can support to determine the level of virtual confidence (Oscarsson et al., 2015). Virtual models as one kind of virtual knowledge which had been explained before, have been designed to reduce costs by simulating the reality. The correctness and accuracy of a virtual model, clarify the level of confidence for that model and its results, for reusing that model to solve another problem. With comparing of the real world knowledge and virtual models expectations, the accuracy of the model can be evaluated, and the reliability of the model can be measured.There are lots of knowledge management systems have been developed, but most of them are trying to manage the organizational knowledge. The focus of this research is collecting the real world knowledge, in an automotive industry and converting them to the usable and classified format. Afterward, those knowledges should be stored and managed in the extended PLM platform.

567891011 351 - 400 of 658
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf