Högskolan i Skövde

his.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Sahlin, Johannes
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi. Department of Information Technology, University of Borås, Sweden.
    Sundell, Håkan
    Department of Information Technology, University of Borås, Sweden.
    Gideon, Mbiydzenyuy
    Department of Information Technology, University of Borås, Sweden.
    Alm, Håkan
    Department of Information Technology, University of Borås, Sweden.
    Holgersson, Jesper
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi.
    Suhonen, Christoffer
    Department of Information Technology, University of Borås, Sweden.
    Hjelm, Tommy
    Department of Information Technology, University of Borås, Sweden.
    Exploring Consumers' Discernment Ability of Autogenerated Advertisements2023Ingår i: Machine Learning, Multi Agent and Cyber Physical Systems: Proceedings of the 15th International FLINS Conference (FLINS 2022) / [ed] Qinglin Sun; Jie Lu; Xianyi Zeng; Etienne E. Kerre; Tianrui Li, World Scientific, 2023, s. 322-329Konferensbidrag (Refereegranskat)
    Abstract [en]

    Autogenerated Advertisements (AGAs) can be a concern for consumers if they suspect that Artificial Intelligence (AI) was involved. Consumers may have an opposing stance against AI, leading companies to miss profit opportunities and reputation loss. Hence, companies need ways of managing consumers’ con-cerns. As a part of designing such advices we explore consumers’ discernment ability (DA) of AGAs. A quantitative survey was used to explore consumers’ DA of AGAs. In order to do this, we administered questionnaires to 233 re-spondents. A statistical analysis including Z-tests, of these responses suggests that consumers can hardly pick out AGAs. This indicates that consumers may be guessing and thus do not possess any significant DA of our AGAs.

  • 2.
    Sahlin, Johannes
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi. Department of Information Technology, University of Borås, Sweden.
    Sundell, Håkan
    Department of Information Technology, University of Borås, Sweden.
    Mbiydzenyuy, Gideon
    Department of Information Technology, University of Borås, Sweden.
    Holgersson, Jesper
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningsmiljön Informationsteknologi.
    Scoped Literature Review of Artificial Intelligence Marketing Adoptions for Ad Optimization with Reinforcement Learning2023Ingår i: Machine Learning, Multi Agent and Cyber Physical Systems: Proceedings of the 15th International FLINS Conference (FLINS 2022) / [ed] Qinglin Sun; Jie Lu; Xianyi Zeng; Etienne E. Kerre; Tianrui Li, World Scientific, 2023, s. 416-423Konferensbidrag (Refereegranskat)
    Abstract [en]

    Artificial Intelligence (AI) and Machine Learning (ML) are shaping marketing activities through digital innovations. Competition is a familiar concept for any digital retailer, and the digital transformation provides hopes for gaining a competitive edge over competitors. Those who do not adopt digital innovations risk getting outcompeted by those who do. This study aims to identify AI mar-keting (AIM) adoptions used for ad optimization with Reinforcement Learning (RL). A scoped literature review is used to find ad optimization adoptions re-search trends with RL in AIM. Scoping this is important both to research and practice as it provides spots for novel adaptations and directions of research of digital ad optimization with RL. The results of the review provide several different adoptions of ad optimization with RL in AIM. In short, the major category is Ad Relevance Optimization that takes several different forms depending on the purpose of the adoption. The underlying found themes of adoptions are Ad Attractiveness, Edge Ad, Sequential Ad and Ad Criteria Optimization. In conclusion, AIM adoptions with RL is scarce, and recommendations for future research are suggested based on the findings of the review.

1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf