his.sePublikasjoner
Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Lidberg, Simon
    et al.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. Volvo Car Corporation, Sweden.
    Aslam, Tehseen
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Pehrsson, Leif
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Ng, Amos H. C.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Evaluating the impact of changes on a global supply chain using an iterative approach in a proof-of-concept model2018Inngår i: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, 2018, University of Skövde, Sweden / [ed] Peter Thorvald, Keith Case, Amsterdam: IOS Press, 2018, s. 467-472Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Analyzing networks of supply-chains, where each chain is comprised of several actors with different purposes and performance measures, is a difficult task. There exists a large potential in optimizing supply-chains for many companies and therefore the supply-chain optimization problem is of great interest to study. To be able to optimize the supply-chain on a global scale, fast models are needed to reduce computational time. Previous research has been made into the aggregation of factories, but the technique has not been tested against supply-chain problems. When evaluating the configuration of factories and their inter-transportation on a global scale, new insights can be gained about which parameters are important and how the aggregation fits to a supply-chain problem. The paper presents an interactive proof-of-concept model enabling testing of supply chain concepts by users and decision makers.

  • 2.
    Lidberg, Simon
    et al.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Aslam, Tehseen
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Pehrsson, Leif
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Ng, Amos H. C.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Optimizing real-world factory flows using aggregated discrete event simulation modelling: Creating decision-support through simulation-based optimization and knowledge-extraction2019Inngår i: Flexible Services and Manufacturing Journal, ISSN 1936-6582, E-ISSN 1936-6590Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Reacting quickly to changing market demands and new variants by improving and adapting industrial systems is an important business advantage. Changes to systems are costly; especially when those systems are already in place. Resources invested should be targeted so that the results of the improvements are maximized. One method allowing this is the combination of discrete event simulation, aggregated models, multi-objective optimization, and data-mining shown in this article. A real-world optimization case study of an industrial problem is conducted resulting in lowering the storage levels, reducing lead time, and lowering batch sizes, showing the potential of optimizing on the factory level. Furthermore, a base for decision-support is presented, generating clusters from the optimization results. These clusters are then used as targets for a decision tree algorithm, creating rules for reaching different solutions for a decision-maker to choose from. Thereby allowing decisions to be driven by data, and not by intuition. 

  • 3.
    Lidberg, Simon
    et al.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system. Volvo Car Corporation, Skövde, Sweden.
    Pehrsson, Leif
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Frantzén, Marcus
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Applying Aggregated Line Modeling Techniques to Optimize Real World Manufacturing Systems2018Inngår i: Procedia Manufacturing, E-ISSN 2351-9789, Vol. 25, s. 89-96Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The application of discrete event simulation methodology in the analysis of higher level manufacturing systems has been limited due to model complexity and the lack of aggregation techniques for manufacturing lines. Recent research has introduced new aggregation methods preparing for new approaches in the analysis of higher level manufacturing systems or networks. In this paper one of the new aggregated line modeling techniques is successfully applied on a real world manufacturing system, solving a real-world problem. The results demonstrate that the aggregation technique is adequate to be applied in plant wide models. Furthermore, in this particular case, there is a potential to reduce storage levels by over 25 %, through leveling the production flow, without compromising deliveries to customers.

    Fulltekst (pdf)
    fulltext
  • 4.
    Lidberg, Simon
    et al.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Pehrsson, Leif
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Ng, Amos H. C.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Using Aggregated Discrete Event Simulation Models and Multi-Objective Optimization to Improve Real-World Factories2018Inngår i: Proceedings of the 2018 Winter Simulation Conference / [ed] M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, B. Johansson, IEEE, 2018, s. 2015-2024Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Improving production line performance and identifying bottlenecks using simulation-based optimization has been shown to be an effective approach. Nevertheless, for larger production systems which are consisted of multiple production lines, using simulation-based optimization can be too computationally expensive, due to the complexity of the models. Previous research has shown promising techniques for aggregating production line data into computationally efficient modules, which enables the simulation of higher-level systems, i.e., factories. This paper shows how a real-world factory flow can be optimized by applying the previously mentioned aggregation techniques in combination with multi-objective optimization using an experimental approach. The particular case studied in this paper reveals potential reductions of storage levels by over 30 %, lead time reductions by 67 %, and batch sizes reduced by more than 50 % while maintaining the delivery precision of the industrial system.

    Fulltekst (pdf)
    fulltext
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf