his.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carlsson, Jessica
    et al.
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Davidsson, Sabina
    Orebro Univ Hosp, Dept Urol, Orebro, Sweden / Univ Orebro, Sch Hlth & Med Sci, Orebro, Sweden.
    Helenius, Gisela
    Orebro Univ Hosp, Dept Lab Med, Orebro, Sweden.
    Karlsson, Mats
    Orebro Univ Hosp, Dept Lab Med, Orebro, Sweden.
    Lubovac, Zelmina
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Andren, Ove
    Orebro Univ Hosp, Dept Urol, Orebro, Sweden .
    Olsson, Björn
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Klinga-Levan, Karin
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    A miRNA expression signature that separates between normal and malignant prostate tissues2011In: Cancer Cell International, ISSN 1475-2867, E-ISSN 1475-2867, Vol. 11, p. 14-Article in journal (Refereed)
    Abstract [en]

    Background: MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that post-transcriptionally regulate genes involved in several key biological processes and thus are involved in various diseases, including cancer. In this study we aimed to identify a miRNA expression signature that could be used to separate between normal and malignant prostate tissues. Results: Nine miRNAs were found to be differentially expressed (p < 0.00001). With the exception of two samples, this expression signature could be used to separate between the normal and malignant tissues. A cross-validation procedure confirmed the generality of this expression signature. We also identified 16 miRNAs that possibly could be used as a complement to current methods for grading of prostate tumor tissues. Conclusions: We found an expression signature based on nine differentially expressed miRNAs that with high accuracy (85%) could classify the normal and malignant prostate tissues in patients from the Swedish Watchful Waiting cohort. The results show that there are significant differences in miRNA expression between normal and malignant prostate tissue, indicating that these small RNA molecules might be important in the biogenesis of prostate cancer and potentially useful for clinical diagnosis of the disease.

    Download full text (pdf)
    Carlsson_et_al_2011
  • 2.
    Falck, Eva
    et al.
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Hedberg, Carola
    Univ Gothenburg, Inst Biomed, Dept Med & Clin Genet, SE-40530 Gothenburg, Sweden.
    Klinga-Levan, Karin
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Behboudi, Afrouz
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    SKY analysis revealed recurrent numerical and structural chromosome changes in BDII rat endometrial carcinomas2011In: Cancer Cell International, ISSN 1475-2867, E-ISSN 1475-2867, Vol. 11, p. 20-Article in journal (Refereed)
    Abstract [en]

    Background: Genomic alterations are common features of cancer cells, and some of these changes are proven to be neoplastic-specific. Such alterations may serve as valuable tools for diagnosis and classification of tumors, prediction of clinical outcome, disease monitoring, and choice of therapy as well as for providing clues to the location of crucial cancer-related genes. Endometrial carcinoma (EC) is the most frequently diagnosed malignancy of the female genital tract, ranking fourth among all invasive tumors affecting women. Cytogenetic studies of human ECs have not produced very conclusive data, since many of these studies are based on karyotyping of limited number of cases and no really specific karyotypic changes have yet been identified. As the majority of the genes are conserved among mammals, the use of inbred animal model systems may serve as a tool for identification of underlying genes and pathways involved in tumorigenesis in humans. In the present work we used spectral karyotyping (SKY) to identify cancer-related aberrations in a well-characterized experimental model for spontaneous endometrial carcinoma in the BDII rat tumor model. Results: Analysis of 21 experimental ECs revealed specific nonrandom numerical and structural chromosomal changes. The most recurrent numerical alterations were gains in rat chromosome 4 (RNO4) and losses in RNO15. The most commonly structural changes were mainly in form of chromosomal translocations and were detected in RNO3, RNO6, RNO10, RNO11, RNO12, and RNO20. Unbalanced chromosomal translocations involving RNO3p was the most commonly observed structural changes in this material followed by RNO11p and RNO10 translocations. Conclusion: The non-random nature of these events, as documented by their high frequencies of incidence, is suggesting for dynamic selection of these changes during experimental EC tumorigenesis and therefore for their potential contribution into development of this malignancy. Comparative molecular analysis of the identified genetic changes in this tumor model with those reported in the human ECs may provide new insights into underlying genetic changes involved in EC development and tumorigenesis.

  • 3.
    Falck, Eva
    et al.
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Karlsson, Sandra
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Carlsson, Jessica
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Helenius, Gisela
    Örebro University Hospital.
    Karlsson, Mats
    Örebro University Hospital.
    Klinga-Levan, Karin
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Loss of Glutathione peroxidase 3 expression is correlated with epigenetic mechanisms in endometrial adenocarcinoma2010In: Cancer Cell International, ISSN 1475-2867, E-ISSN 1475-2867, Vol. 10, p. 46-Article in journal (Refereed)
    Abstract [en]

    Glutathione peroxidase 3 (GPX3) is one of the key enzymes in the cellular defense against oxidative stress and the hepatocyte growth factor receptor, (MET) has been suggested to be influenced by the GPX3 gene expression. In a previous microarray study performed by our group, Gpx3 was identified as a potential biomarker for rat endometrial adenocarcinoma (EAC), since the expression was highly downregulated in rat EAC tumors. Herein, we have investigated the mRNA expression and Gpx3 and Met in rat EAC by real time quantitative PCR (qPCR), and the methylation status of Gpx3. In addition we have examined the expression of GPX3 and MET in 30 human EACs of different FIGO grades and 20 benign endometrial tissues. We found that the expression of GPX3 was uniformly down regulated in both rat and human EAC, regardless of tumor grade or histopathological subtype, implying that the down-regulation is an early event in EAC. The rate of Gpx3 promoter methylation reaches 91%, where biallelic methylation was present in 90% of the methylated tumors. The expression of the Met oncogene was slightly upregulated in EACs that showed loss of expression of Gpx3, but no tumor suppressor activity of Gpx3/GPX3 was detected. Preliminary results also suggest that the production of H2O2 is higher in rat endometrial tumors with down-regulated Gpx3 expression. A likely consequence of loss of GPX3 protein function would be a higher amount of ROS in the cancer cell environment. Thus, the results suggest important clinical implications of the GPX3 expression in EAC, both as a molecular biomarker for EAC and as a potential target for therapeutic interventions.

  • 4.
    Falck, Eva
    et al.
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Klinga-Levan, Karin
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Expression patterns of PHF5A/Phf5a and GJa1/Gja1 in rat and human endometrial cancer2013In: Cancer Cell International, ISSN 1475-2867, E-ISSN 1475-2867, Vol. 13, no 1, article id 43Article in journal (Refereed)
    Abstract [en]

    Endometrial adenocarcinoma is the most frequently diagnosed cancer of the female genital tract in the western world. Studies of complex diseases can be difficult to perform on human tumor samples due to the high genetic heterogeneity in human. The use of rat models is preferable since rat has similarities in pathogenesis and histopathological properties to that of human.

    A genomic region including the highly conserved Phf5a gene associated to development of EAC has previously been identified in an association study. PHF5A has been suggested to acts as a transcription factor or cofactor in the up regulation of expression of Gja1 gene in the presence of estrogen. It has earlier been shown that the Phf5a gene is down regulated in rat EAC derived cell lines by means of expression microarrays.

    We analyzed the expression of Phf5a and Gja1 by qPCR, and potential relations between the two genes in EAC tumors and non-malignant cell lines derived from the BDII rat model. In addition, the expression pattern of these genes was compared in rat and human EAC tumor samples.

    Changes in expression for Phf5a/PHF5A were found in tumors from both rat and human even though the observed pattern was not completely consistent between the two species. By separating rat EAC cell lines according to the genetic background, a significant lower expression of Phf5a in one of the two cross backgrounds was revealed, but not for the other. In contrast to other studies, Phf5a/PHF5A regulation of Gja1/GJA1 was not revealed in this study.

  • 5.
    Jurcevic, Sanja
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Olsson, Björn
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Bioscience.
    Klinga-Levan, Karin
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Bioscience.
    MicroRNA expression in human endometrial adenocarcinoma2014In: Cancer Cell International, ISSN 1475-2867, E-ISSN 1475-2867, Vol. 14, no 1, article id 88Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: MicroRNAs are small non-coding RNAs that play crucial roles in the pathogenesis of different cancer types. The aim of this study was to identify miRNAs that are differentially expressed in endometrial adenocarcinoma compared to healthy endometrium. These miRNAs can potentially be used to develop a panel for classification and prognosis in order to better predict the progression of the disease and facilitate the choice of treatment strategy.

    METHODS: Formalin fixed paraffin embedded endometrial tissue samples were collected from the Örebro university hospital. QPCR was used to quantify the expression levels of 742 miRNAs in 30 malignant and 20 normal endometrium samples. After normalization of the qPCR data, miRNAs differing significantly in expression between normal and cancer samples were identified, and hierarchical clustering analysis was used to identify groups of miRNAs with coordinated expression profiles.

    RESULTS: In comparisons between endometrial adenocarcinoma and normal endometrium samples 138 miRNAs were found to be significantly differentially expressed (p < 0.001) among which 112 miRNAs have not been previous reported for endometrial adenocarcinoma.

    CONCLUSION: Our study shows that several miRNAs are differentially expressed in endometrial adenocarcinoma. These identified miRNA hold great potential as target for classification and prognosis of this disease. Further analysis of the differentially expressed miRNA and their target genes will help to derive new biomarkers that can be used for classification and prognosis of endometrial adenocarcinoma.

    Download full text (pdf)
    fulltext
  • 6.
    Jurcevic, Sanja
    et al.
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Olsson, Björn
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Klinga-Levan, Karin
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Validation of Suitable Endogenous Control Genes for Quantitative PCR Analysis of microRNA gene expression in a rat model of endometrial cancer2013In: Cancer Cell International, ISSN 1475-2867, E-ISSN 1475-2867, Vol. 13, article id 45Article in journal (Refereed)
    Abstract [en]

    Background

    MicroRNAs are small RNA molecules that negatively regulate gene expression by translational inhibition or mRNA cleavage. The discovery that abnormal expression of particular miRNAs contributes to human disease, including cancer, has spurred growing interest in analysing expression profiles of these molecules. Quantitative polymerase chain reaction is frequently used for quantification of miRNA expression due to its sensitivity and specificity. To minimize experimental error in this system an appropriate endogenous control gene must be chosen. An ideal endogenous control gene should be expressed at a constant level across all samples and its expression stability should be unaffected by the experimental procedure.

    Results

    The expression and validation of candidate control genes (4.5S RNA(H) A, Y1, 4.5S RNA(H) B, snoRNA, U87 and U6) was examined in 21 rat cell lines to establish the most suitable endogenous control for miRNA analysis in a rat model of cancer. The stability of these genes was analysed using geNorm and NormFinder algorithms. U87 and snoRNA were identified as the most stable control genes, while Y1 was least stable.

    Conclusion

    This study identified the control gene that is most suitable for normalizing the miRNA expression data in rat. That reference gene will be useful when miRNAs expression are analyzed in order to find new miRNA markers for endometrial cancer in rat.

    Download full text (pdf)
    Validation of Suitable Endogenous Control Genes for Quantitative PCR Analysis of microRNA gene expression in a rat model of endometrial cancer
  • 7.
    Karlsson, Sandra
    et al.
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Olsson, Björn
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Klinga-Levan, Karin
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Gene expression profiling predicts a three-gene expression signature of endometrial adenocarcinoma in a rat model2009In: Cancer Cell International, ISSN 1475-2867, E-ISSN 1475-2867, Vol. 9, p. Article Number: 12-Article in journal (Refereed)
    Abstract [en]

     

    Background: In the Western world, endometrial cancers are the most common gynaecological neoplastic disorders among women. Initial symptoms are often vague and may be confused with several other conditions or disorders. Thus, there is a need for an easy and reliable diagnostic tool. The objective of this work was to identify a gene expression signature specific for endometrial adenocarcinomas to be used for testing potential endometrial biomarkers.

    Results: Changes in expression between endometrial adenocarcinomas and non-/pre-malignant endometrium from the BDII EAC rat model were compared in cDNA microarray assays. By employing classification analysis (Weka) on the expression data from approximately 5600 cDNA clones and TDT analysis on genotype data, we identified a three-gene signature (Gpx3, Bgn and Tgfb3). An independent analysis of differential expression, revealed a total of 354 cDNA clones with significant changes in expression. Among the 10 best ranked clones, Gpx3, Bgn and Tgfb3 were found.

     

    Conclusion: Taken together, we present a unique data set of genes with different expression patterns between EACs and non-/pre-malignant endometrium, and specifically we found three genes that were confirmed in two independent analyses. These three genes are candidates for an EAC signature and further evaluations of their involvement in EAC tumorigenesis will be undertaken.

    Download full text (pdf)
    fulltext
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf