his.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Delsing, Louise
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. Department of Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Gothenburg, Sweden / Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden.
    Dönnes, Pierre
    SciCross AB, Skövde, Sweden.
    Sánchez, José
    Biostatistics, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden.
    Clausen, Maryam
    Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden.
    Voulgaris, Dmitrios
    Department of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden.
    Falk, Anna
    Department of Neuroscience, Karolinska Institutet, Stockholm.
    Herland, Anna
    Department of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden / Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
    Brolén, Gabriella
    Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden.
    Zetterberg, Henrik
    Department of Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Institute of Neuroscience and Physiology, Gothenburg, Sweden / iClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden / Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom / UK Dementia Research Institute at UCL, London, United Kingdom.
    Hicks, Ryan
    Discovery Sciences, IMED Biotech Unit, AstraZeneca, Mölndal, Sweden.
    Synnergren, Jane
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Barrier properties and transcriptome expression in human iPSC-derived models of the blood-brain barrier2018In: Stem Cells, ISSN 1066-5099, E-ISSN 1549-4918, Vol. 36, no 12, p. 1816-1827Article in journal (Refereed)
    Abstract [en]

    Cell-based models of the blood-brain barrier (BBB) are important for increasing the knowledge of BBB formation, degradation and brain exposure of drug substances. Human models are preferred over animal models because of inter-species differences in BBB structure and function. However, access to human primary BBB tissue is limited and has shown degeneration of BBB functions in vitro. Human induced pluripotent stem cells (iPSCs) can be used to generate relevant cell types to model the BBB with human tissue. We generated a human iPSC-derived model of the BBB that includes endothelial cells in co-culture with pericytes, astrocytes and neurons. Evaluation of barrier properties showed that the endothelial cells in our co-culture model have high transendothelial electrical resistance, functional efflux and ability to discriminate between CNS permeable and non-permeable substances. Whole genome expression profiling revealed transcriptional changes that occur in co-culture, including upregulation of tight junction proteins such as claudins and neurotransmitter transporters. Pathway analysis implicated changes in the WNT, TNF and PI3K-Akt pathways upon co-culture. Our data suggests that co-culture of iPSC-derived endothelial cells promotes barrier formation on a functional and transcriptional level. The information about gene expression changes in co-culture can be used to further improve iPSC-derived BBB models through selective pathway manipulation.

    Download full text (pdf)
    fulltext
  • 2.
    Synnergren, Jane
    et al.
    University of Skövde, School of Humanities and Informatics.
    Giesler, Therese L.
    GE Healthcare, Piscataway, NJ, United States.
    Adak, Sudeshna
    GE John F. Welch Technology Centre Export Promotion Industrial Park, Bangalore, India.
    Tandon, Reeti
    GE John F. Welch Technology Centre Export Promotion Industrial Park, Bangalore, India.
    Noaksson, Karin
    Cellartis AB, Göteborg, Sweden.
    Lindahl, Anders
    Department of Clinical Chemistry/Transfusion Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
    Nilsson, Patric
    University of Skövde, School of Life Sciences.
    Nelson, Deirdre
    GE Global Research Center, Niskayuna, NY, United States.
    Olsson, Björn
    University of Skövde, School of Humanities and Informatics.
    Englund, Mikael C. O.
    Cellartis AB, Göteborg, Sweden.
    Abbott, Stewart
    GE Global Research Center, Niskayuna, NY, United States.
    Sartipy, Peter
    Cellartis AB, Göteborg, Sweden / Cellartis AB, Arvid Wallgrens Backe 20, SE-41346 Göteborg, Sweden.
    Differentiating human embryonic stem cells express a unique housekeeping gene signature2007In: Stem Cells, ISSN 1066-5099, E-ISSN 1549-4918, Vol. 25, no 2, p. 473-480Article in journal (Refereed)
    Abstract [en]

    Housekeeping genes (HKGs) are involved in basic functions needed for the sustenance of the cell and are assumed to be constitutively expressed at a constant level. Based on these features, HKGs are frequently used for normalization of gene expression data. In the present study, we used the CodeLink Gene Expression Bioarray system to interrogate changes in gene expression occurring during differentiation of human ESCs (hESCs). Notably, in the three hESC lines used for the study, we observed that the RNA levels of 56 frequently used HKGs varied to a degree that rendered them inappropriate as reference genes. Therefore, we defined a novel set of HKGs specifically for hESCs. Here we present a comprehensive list of 292 genes that are stably expressed (coefficient of variation <20%) in differentiating hESCs. These genes were further grouped into high-, medium-, and low-expressed genes. The expression patterns of these novel HKGs show very little overlap with results obtained from somatic cells and tissues. We further explored the stability of this novel set of HKGs in independent, publicly available gene expression data from hESCs and observed substantial similarities with our results. Gene expression was confirmed by real-time quantitative polymerase chain reaction analysis. Taken together, these results suggest that differentiating hESCs have a unique HKG signature and underscore the necessity to validate the expression profiles of putative HKGs. In addition, this novel set of HKGs can preferentially be used as controls in gene expression analyses of differentiating hESCs.

  • 3.
    Synnergren, Jane
    et al.
    University of Skövde, School of Life Sciences.
    Åkesson, Karolina
    Cellartis AB, Gothenburg, Sweden.
    Dahlenborg, Kerstin
    Cellartis AB, Gothenburg, Sweden.
    Vidarsson, Hilmar
    Cellartis AB, Gothenburg, Sweden.
    Ameen, Caroline
    Cellartis AB, Gothenburg, Sweden.
    Steel, Daniella
    Cellartis AB, Gothenburg, Sweden.
    Lindahl, Anders
    Sahlgrens Univ Hosp, Dept Clin Chem Transfus Med, S-41345 Gothenburg, Sweden.
    Olsson, Björn
    University of Skövde, School of Life Sciences.
    Sartipy, Peter
    Cellartis AB, Gothenburg, Sweden.
    Molecular signature of cardiomyocyte clusters derived from human embryonic stem cells2008In: Stem Cells, ISSN 1066-5099, E-ISSN 1549-4918, Vol. 26, no 7, p. 1831-1840Article in journal (Refereed)
    Abstract [en]

    Human embryonic stem cells (hESCs) can differentiate in vitro into spontaneously contracting cardiomyocytes (CMs). These cells may prove extremely useful for various applications in basic research, drug discovery, and regenerative medicine. To fully use the potential of the cells, they need to be extensively characterized, and the regulatory mechanisms that control hESC differentiation toward the cardiac lineage need to be better defined. In this study, we used microarrays to analyze, for the first time, the global gene expression profile of isolated hESC-derived CM clusters. By comparing the clusters with undifferentiated hESCs and using stringent selection criteria, we identified 530 upregulated and 40 downregulated genes in the contracting clusters. To further characterize the family of upregulated genes in the hESC-derived CM clusters, the genes were classified according to their Gene Ontology annotation. The results indicate that the hESC-derived CM clusters display high similarities, on a molecular level, to human heart tissue. Moreover, using the family of upregulated genes, we created protein interaction maps that revealed topological characteristics. We also searched for cellular pathways among the upregulated genes in the hESC-derived CM clusters and identified eight significantly upregulated pathways. Real-time quantitative polymerase chain reaction and immunohistochemical analysis confirmed the expression of a subset of the genes identified by the microarrays. Taken together, the results presented here provide a molecular signature of hESC-derived CM clusters and further our understanding of the biological processes that are active in these cells.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf