his.sePublikasjoner
Endre søk
Begrens søket
1 - 16 of 16
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Falkman, Göran
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Helldin, Tove
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Visual Data Analysis2019Inngår i: Data science in Practice / [ed] Alan Said, Vicenç Torra, Springer, 2019, s. 133-155Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    Data Science offers a set of powerful approaches for making new discoveries from large and complex data sets. It combines aspects of mathematics, statistics, machine learning, etc. to turn vast amounts of data into new insights and knowledge. However, the sole use of automatic data science techniques for large amounts of complex data limits the human user’s possibilities in the discovery process, since the user is estranged from the process of data exploration. This chapter describes the importance of Information Visualization (InfoVis) and visual analytics (VA) within data science and how interactive visualization can be used to support analysis and decision-making, empowering and complementing data science methods. Moreover, we review perceptual and cognitive aspects, together with design and evaluation methodologies for InfoVis and VA.

  • 2.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Havsol, Jesper
    AstraZeneca, Gothenburg, Sweden.
    Karpefors, Martin
    AstraZeneca, Gothenburg, Sweden.
    Karlsson, Alexander
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Mathiason, Gunnar
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Short Text Topic Modeling to Identify Trends on Wearable Bio-sensors in Different Media Types2019Inngår i: Proceedings - 6th International Symposium on Computational and Business Intelligence, ISCBI 2018, IEEE Computer Society, 2019, s. 89-93Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The technology and techniques for bio-sensors are rapidly evolving. Accordingly, there is significant business interest to identify upcoming technologies and new targets for the near future. Text information from internet reflects much of the recent information and public interests that help to understand the trend of a certain field. Thus, we utilize Dirichlet process topic modeling on different media sources containing short text (e.g., blogs, news) which is able to self-adapt the learned topic space to the data. We share the observations from the domain experts on the results derived from topic modeling on wearable biosensors from multiple media sources over more than eight years. We analyze the topics on wearable devices, forecast and market analysis, and bio-sensing techniques found from our method. 

  • 3.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. University of Skövde .
    Helldin, Tove
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. University of Skövde.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi. University of Skövde.
    Identifying Root Cause and Derived Effects in Causal Relationships2017Inngår i: Human Interface and the Management of Information: Information, Knowledge and Interaction Design: 19th International Conference, HCI International 2017, Vancouver, BC, Canada, July 9–14, 2017, Proceedings, Part I / [ed] Sakae Yamamoto, Springer, 2017, s. 22-34Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper focuses on identifying factors that influence the process of finding a root cause and a derived effect in causal node-link graphs with associated strength and significance depictions. We discuss in detail the factors that seem to be involved in identifying a global cause and effect based on the analysis of the results of an online user study with 44 participants, who used both sequential and non-sequential graph layouts. In summary, the results show that participants show geodesic-path tendencies when selecting causes and derived effects, and that context matters, i.e., participant’s own beliefs, experiences and knowledge might influence graph interpretation.

  • 4.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Helldin, Tove
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Understanding Indirect Causal Relationships in Node-Link Graphs2017Inngår i: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 36, nr 3, s. 411-421Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To find correlations and cause and effect relationships in multivariate data sets is central in many data analysis problems. A common way of representing causal relations among variables is to use node-link diagrams, where nodes depict variables and edges show relationships between them. When performing a causal analysis, analysts may be biased by the position of collected evidences, especially when they are at the top of a list. This is of crucial importance since finding a root cause or a derived effect, and searching for causal chains of inferences are essential analytic tasks when investigating causal relationships. In this paper, we examine whether sequential ordering influences understanding of indirect causal relationships and whether it improves readability of multi-attribute causal diagrams. Moreover, we see how people reason to identify a root cause or a derived effect. The results of our design study show that sequential ordering does not play a crucial role when analyzing causal relationships, but many connections from/to a variable and higher strength/certainty values may influence the process of finding a root cause and a derived effect.

  • 5.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Karlsson, Alexander
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Mellin, Jonas
    Högskolan i Skövde, Forskningscentrum för Informationsteknologi. Högskolan i Skövde, Institutionen för informationsteknologi.
    Ståhl, Niclas
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Torra, Vicenç
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Complex Data Analysis2019Inngår i: Data science in Practice / [ed] Alan Said, Vicenç Torra, Springer, 2019, s. 157-169Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    Data science applications often need to deal with data that does not fit into the standard entity-attribute-value model. In this chapter we discuss three of these other types of data. We discuss texts, images and graphs. The importance of social media is one of the reason for the interest on graphs as they are a way to represent social networks and, in general, any type of interaction between people. In this chapter we present examples of tools that can be used to extract information and, thus, analyze these three types of data. In particular, we discuss topic modeling using a hierarchical statistical model as a way to extract relevant topics from texts, image analysis using convolutional neural networks, and measures and visual methods to summarize information from graphs.

  • 6.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Ventocilla, Elio
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Helldin, Tove
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Falkman, Göran
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Evaluating Multi-Attributes on Cause and Effect Relationship Visualization2017Inngår i: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017): Volumne 3: IVAPP / [ed] Alexandru Telea, Jose Braz, Lars Linsen, SciTePress, 2017, s. 64-74Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper presents findings about visual representations of cause and effect relationship's direction, strength, and uncertainty based on an online user study. While previous researches focus on accuracy and few attributes, our empirical user study examines accuracy and the subjective ratings on three different attributes of a cause and effect relationship edge. The cause and effect direction was depicted by arrows and tapered lines; causal strength by hue, width, and a numeric value; and certainty by granularity, brightness, fuzziness, and a numeric value. Our findings point out that both arrows and tapered cues work well to represent causal direction. Depictions with width showed higher conjunct accuracy and were more preferred than that with hue. Depictions with brightness and fuzziness showed higher accuracy and were marked more understandable than granularity. In general, depictions with hue and granularity performed less accurately and were not preferred compared to the ones with numbers or with width and brightness.

  • 7.
    Bae, Juhee
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Ventocilla, Elio
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Torra, Vicenç
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    On the Visualization of Discrete Non-additive Measures2018Inngår i: Aggregation Functions in Theory and in Practice AGOP 2017 / [ed] Torra V, Mesiar R, Baets B, Springer, 2018, s. 200-210Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Non-additive measures generalize additive measures, and have been utilized in several applications. They are used to represent different types of uncertainty and also to represent importance in data aggregation. As non-additive measures are set functions, the number of values to be considered grows exponentially. This makes difficult their definition but also their interpretation and understanding. In order to support understability, this paper explores the topic of visualizing discrete non-additive measures using node-link diagram representations.

  • 8.
    Christensen, Johanne
    et al.
    North Carolina State University, United States.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Watson, Benjamin
    North Carolina State University, United States.
    Talamadupula, Kartik
    IBM Research, United States.
    Spjut, Josef
    NVIDIA, United States.
    Joines, Stacy
    IBM Watson, United States.
    UIBK: User interactions for building knowledge2019Inngår i: International Conference on Intelligent User Interfaces, Proceedings IUI, Association for Computing Machinery (ACM), 2019, s. 131-132Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This half-day workshop seeks to bring together practitioners and academics interested in the challenges of structuring interactions for subject matter experts (SMEs) who are providing knowledge and/or feedback to an AI system, but are not well-versed in the underlying algorithms. Since the information provided by SMEs directly effects the efficacy of the final system, collecting the correct data is a problem that navigates issues ranging from curating data that may be tainted to structuring data collection tasks in such a way as to mitigate user boredom. The goal of this workshop is to discuss methods and new paradigms for productively interacting with users while collecting knowledge. 

  • 9.
    Holst, Anders
    et al.
    RISE SICS, Sweden.
    Bouguelia, Mohamed-Rafik
    CAISR, Halmstad, Sweden.
    Görnerup, Olof
    RISE SICS, Sweden.
    Pashami, Sepideh
    CAISR, Halmstad, Sweden.
    Al-Shishtawy, Ahmad
    RISE SICS, Sweden.
    Falkman, Göran
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Karlsson, Alexander
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Said, Alan
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Girdzijauskas, Šarunas
    RISE SICS, Sweden.
    Nowaczyk, Sławomir
    CAISR, Halmstad, Sweden.
    Soliman, Amira
    RISE SICS, Sweden.
    Eliciting structure in data2019Inngår i: CEUR Workshop Proceedings / [ed] Christoph Trattner, Denis Parra, Nathalie Riche, CEUR-WS , 2019, Vol. 2327Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper demonstrates how to explore and visualize different types of structure in data, including clusters, anomalies, causal relations, and higher order relations. The methods are developed with the goal of being as automatic as possible and applicable to massive, streaming, and distributed data. Finally, a decentralized learning scheme is discussed, enabling finding structure in the data without collecting the data centrally. 

  • 10.
    Holst, Anders
    et al.
    RISE SICS, Stockholm, Sweden.
    Karlsson, Alexander
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Bouguelia, Mohamed-Rafik
    Department of Intelligent Systems and Digital Design, Halmstad University, Sweden.
    Interactive clustering for exploring multiple data streams at different time scales and granularity2019Inngår i: Proceedings of the Workshop on Interactive Data Mining, WIDM 2019, Association for Computing Machinery (ACM), 2019Konferansepaper (Fagfellevurdert)
    Abstract [en]

    We approach the problem of identifying and interpreting clusters over different time scales and granularity in multivariate time series data. We extract statistical features over a sliding window of each time series, and then use a Gaussian mixture model to identify clusters which are then projected back on the data streams. The human analyst can then further analyze this projection and adjust the size of the sliding window and the number of clusters in order to capture the different types of clusters over different time scales. We demonstrate the effectiveness of our approach in two different application scenarios: (1) fleet management and (2) district heating, wherein each scenario, several different types of meaningful clusters can be identified when varying over these dimensions. 

  • 11.
    Holst, Anders
    et al.
    RISE SICS, Stockholm, Sweden.
    Pashami, Sepideh
    Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Sweden.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Incremental causal discovery and visualization2019Inngår i: Proceedings of the Workshop on Interactive Data Mining, WIDM 2019, Association for Computing Machinery (ACM), 2019, s. 1-6Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Discovering causal relations from limited amounts of data can be useful for many applications. However, all causal discovery algorithms need huge amounts of data to estimate the underlying causal graph. To alleviate this gap, this paper proposes a novel visualization tool which incrementally discovers causal relations as more data becomes available. That is, we assume that stronger causal links will be detected quickly and weaker links revealed when enough data is available. In addition to causal links, the correlation between variables and the uncertainty of the strength of causal links are visualized in the same graph. The tool is illustrated on three example causal graphs, and results show that incremental discovery works and that the causal structure converges as more data becomes available. 

  • 12.
    Karlsson, Alexander
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Duarte, Denio
    Campus Chapecó, Federal University of Fronteira sul, Chapecó, Brazil.
    Mathiason, Gunnar
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Evaluation of the dirichlet process multinomial mixture model for short-text topic modeling2018Inngår i: Proceedings - 6th International Symposium on Computational and Business Intelligence, ISCBI 2018, USA: Institute of Electrical and Electronics Engineers (IEEE), 2018, s. 79-83, artikkel-id 8638311Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Fast-moving trends, both in society and in highly competitive business areas, call for effective methods for automatic analysis. The availability of fast-moving sources in the form of short texts, such as social media and blogs, allows aggregation from a vast number of text sources, for an up to date view of trends and business insights. Topic modeling is established as an approach for analysis of large amounts of texts, but the scarcity of statistical information in short texts is considered to be a major problem for obtaining reliable topics from traditional models such as LDA. A range of different specialized topic models have been proposed, but a majority of these approaches rely on rather strong parametric assumptions, such as setting a fixed number of topics. In contrast, recent advances in the field of Bayesian non-parametrics suggest the Dirichlet process as a method that, given certain hyper-parameters, can self-adapt to the number of topics of the data at hand. We perform an empirical evaluation of the Dirichlet process multinomial (unigram) mixture model against several parametric topic models, initialized with different number of topics. The resulting models are evaluated, using both direct and indirect measures that have been found to correlate well with human topic rankings. We show that the Dirichlet Process Multinomial Mixture model is a viable option for short text topic modeling since it on average performs better, or nearly as good, compared to the parametric alternatives, while reducing parameter setting requirements and thereby eliminates the need of expensive preprocessing. 

  • 13.
    Kim, Johoo
    et al.
    Purdue University, West Lafayette, IN, United States.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Hastak, Markand
    Purdue University, West Lafayette, IN, United States.
    Emergency information diffusion on online social media during storm Cindy in U.S.2018Inngår i: International Journal of Information Management, ISSN 0268-4012, E-ISSN 1873-4707, Vol. 40, s. 153-165Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Social media plays a critical role in propagating emergency information during disasters. Governmental agencies have opened social media accounts for emergency communication channels. To understand the underlying mechanism of user behaviors and engagement, this study employs social network analysis to investigate information network and diffusion across news, weather agencies, governmental agencies, organizations and the public during the 2017 Storm Cindy in the U.S. This study identified certain types of Twitter users (news and weather agencies) were dominant as information sources and information diffusers (the public and organizations). However, the information flow in the network was controlled by numerous types of users including news, agency, weather agencies and the public. The results highlighted the importance of understanding the unique characteristics of social media and networks for better emergency communication system. © 2018 Elsevier Ltd

  • 14.
    Olson, Nasrine
    et al.
    Swedish School of Library and Information Science (SSLIS), University of Borås, Borås, Sweden.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Biosensors-Publication Trends and Knowledge Domain Visualization2019Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 19, nr 11, artikkel-id 2615Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The number of scholarly publications on the topic of biosensors has increased rapidly; as a result, it is no longer easy to build an informed overview of the developments solely by manual means. Furthermore, with many new research results being continually published, it is useful to form an up-to-date understanding of the recent trends or emergent directions in the field. This paper utilizes bibliometric methods to provide an overview of the developments in the topic based on scholarly publications. The results indicate an increasing interest in the topic of biosensor(s) with newly emerging sub-topics. The US is identified as the country with highest total contribution to this area, but as a collective, EU countries top the list of total contributions. An examination of trends over the years indicates that in recent years, China-based authors have been more productive in this area. If research contribution per capita is considered, Singapore takes the top position, followed by Sweden, Switzerland and Denmark. While the number of publications on biosensors seems to have declined in recent years in the PubMed database, this is not the case in the Web of Science database. However, there remains an indication that the rate of growth in the more recent years is slowing. This paper also presents a comparison of the developments in publications on biosensors with the full set of publications in two of the main journals in the field. In more recent publications, synthetic biology, smartphone, fluorescent biosensor, and point-of-care testing are among the terms that have received more attention. The study also identifies the top authors and journals in the field, and concludes with a summary and suggestions for follow up research.

  • 15.
    Said, Alan
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Parra, Denis
    Pontifical Catholic University of Chile, Santiago, Chile.
    Pashami, Sepideh
    Halmstad University, Sweden.
    IDM-WSDM 2019: Workshop on interactive data mining2019Inngår i: WSDM 2019 - Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Association for Computing Machinery (ACM), 2019, s. 846-847Konferansepaper (Fagfellevurdert)
    Abstract [en]

    The first Workshop on Interactive Data Mining is held in Melbourne, Australia, on February 15, 2019 and is co-located with 12th ACM International Conference on Web Search and Data Mining (WSDM 2019). The goal of this workshop is to share and discuss research and projects that focus on interaction with and interactivity of data mining systems. The program includes invited speaker, presentation of research papers, and a discussion session. © 2019 held by the owner/author(s).

  • 16.
    Ventocilla, Elio
    et al.
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Bae, Juhee
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Riveiro, Maria
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Said, Alan
    Högskolan i Skövde, Institutionen för informationsteknologi. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    A Billiard Metaphor for Exploring Complex Graphs2017Inngår i: Second Workshop on Supporting Complex Search Tasks / [ed] Marijn Koolen, Jaap Kamps, Toine Bogers, Nick Belkin, Diane Kelly, Emine Yilmaz, 2017, Vol. 1798, s. 37-40Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Exploring and revealing relations between the elements is a fre-quent task in exploratory analysis and search. Examples includethat of correlations of attributes in complex data sets, or facetedsearch. Common visual representations for such relations are di-rected graphs or correlation matrices. These types of visual encod-ings are often - if not always - fully constructed before being shownto the user. This can be thought of as a top-down approach, whereusers are presented with a full picture for them to interpret andunderstand. Such a way of presenting data could lead to a visualoverload, specially when it results in complex graphs with highdegrees of nodes and edges. We propose a bottom-up alternativecalled Billiard where few elements are presented at rst and fromwhich a user can interactively construct the rest based on whats/he nds of interest. The concept is based on a billiard metaphorwhere a cue ball (node) has an eect on other elements (associatednodes) when stroke against them.

1 - 16 of 16
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf