Information fusion, the synergistic combination of information from multiple sources, is an established research area within the defense sector. In manufacturing however, it is less well-established, with the exception of sensor/data fusion for automatic decision making. The paper briefly discusses some military specific models and methods for information fusion; analogies with manufacturing as well as a more generalized terminology are presented. “Manufacturing” is an application scenario within a Swedish information fusion research program that studies information fusion from databases, sensors and simulations with (currently) a focus on support for human decision making. An area of particular interest is that of advanced applications of virtual manufacturing such as synthetic environments, a form of hardware in the loop simulation that can deliver services such as service and maintenance at remote locations. In this area, the manufacturing industry can benefit from ongoing work in the defense sector related to verification, validation and accreditation of simulation models.
In the era of globalization, one of the key factors for manufacturing machine builders/suppliers to remain competitive is their capability to provide cost-effective and comprehensive machine service and maintenance for their clients at anytime, anywhere. Previous research has highlighted the role of virtual engineering tools in the design and development life cycle of manufacturing machinery systems. Virtual engineering models created during the development phase can potentially be used to provide valuable functions for many other tasks during the operational phase, including service and maintenance support. This paper introduces an innovative Internet-enabled three-dimensional-based virtual engineering framework that can be used for such purposes. Specifically, it addresses a system architecture that is designed to facilitate the tight integration between virtual engineering tools and a set of Internet-based reconfigurable modular maintenance supporting tools. This system architecture has been verified by implementations using different toolsets atop of various Internet technologies (e.g. XML Web services and LabView's Datasocket). Implementation details and successful industrial-based test cases are also provided in this paper.
Virtual manufacturing, or manufacturing simulation, can be divided into three domains: product domain, process domain, and resource domain. This paper focuses on the use of virtual manufacturing for press line monitoring and diagnostics. It contains an introduction to virtual manufacturing, divided into a general part on modelling and simulation, verification, validation and acceptance, and the division into the three domains, as well as a specific part on the use of simulation in these domains for sheet metal products, processes and processing equipment. The main software tools discussed in this paper are discrete event simulation and computer-aided robotics; the designed and implemented machine service support system is an example of advanced use of three-dimensional (3-D) graphical simulation in the resource domain. This system offers remote on-line monitoring and diagnostics functions as well as media player-type functions such as replay that allow a service and maintenance expert to analyse disturbances that occur at remote locations. A key feature of the system is 3-D graphical simulation with I/O synchronisation. This type of system is particularly useful for system integrators and machine builders that install press lines and press cells world-wide and need to guarantee a high level of availability of the installed machinery.