his.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Jonsson, Tomas
    et al.
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Karlsson, Patrik
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Jonsson, Annie
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Food web structure affects the extinction risk of species in ecological communities2006In: Ecological Modelling, ISSN 0304-3800, E-ISSN 1872-7026, Vol. 199, no 1, p. 93-106Article in journal (Refereed)
    Abstract [en]

    This paper studies the effect of food web structure on the extinction risk of species. We examine 793 different six-species food web structures with different number, position and strength of trophic links and expose them to stochasticity in a model with Lotka–Volterra predator–prey dynamics. The characteristics of species (intrinsic rates of increase as well as intraspecific density dependence) are held constant, but the interactions with other species and characteristics of the food web are varied.

    Extinctions of producer species occurred but were rare. Species at all trophic levels went extinct in communities with strong interactions as compared to communities with no strong interactions where only the secondary consumer went extinct. Extinction of a species directly involved in a strong interaction was more frequent than extinctions of species not directly involved in strong interactions (here termed direct and indirect extinctions, respectively). In model webs where both direct and indirect extinctions occurred, roughly 20% were indirect extinctions. The probability of indirect extinctions decreased with number of links. It is concluded that not just the presence of strong interactions but also their position and direction can have profound effects on extinction risk of species.

    Three principal components, based on 11 different food web metrics, explained 76.6% of the variation in trophic structure among food webs that differed in the number and position, but not strength, of trophic links. The extinction risk of consumer species was closely correlated to at least two of the three principal components, indicating that extinction risk of consumer species were affected by food web structure. The existence of a relationship between food web structure and extinction risk of a species was confirmed by a regression tree analysis and a complementary log-linear analysis. These analyses showed that extinction of consumer species were affected by the position of strong interactions and a varying number of other food web metrics, different for intermediate and top species. Furthermore, the degree to which the equilibrium abundance of a species is affected by a press perturbation is an indication of the risk of extinction that this species faces when exposed to environmental stochasticity. It is concluded that extinction risk of a species is determined in a complicated way by an interaction among species characteristics, food web structure and the type of disturbance.

  • 2.
    Jonsson, Tomas
    et al.
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Karlsson, Patrik
    University of Skövde, The Systems Biology Research Centre.
    Jonsson, Annie
    University of Skövde, The Systems Biology Research Centre. University of Skövde, School of Life Sciences.
    Trophic interactions affect the population dynamics and risk of extinction of basal species in food webs2010In: Ecological Complexity: An International Journal on Biocomplexity in the Environment and Theoretical Ecology, ISSN 1476-945X, E-ISSN 1476-9840, Vol. 7, no 1, p. 60-68Article in journal (Refereed)
    Abstract [en]

    This paper addresses effects of trophic complexity on basal species, in a Lotka–Volterra model with stochasticity. We use simple food web modules, with three trophic levels, and expose every species to random environmental stochasticity and analyze (1) the effect of the position of strong trophic interactions on temporal fluctuations in basal species’ abundances and (2) the relationship between fluctuation patterns and extinction risk. First, the numerical simulations showed that basal species do not simply track the environment, i.e. species dynamics do not simply mirror the characteristics of the applied environmental stochasticity. Second, the extinction risk of species was related to the fluctuation patterns of the species.

    More specifically, we show (i) that despite being forced by random stochasticity without temporal autocorrelation (i.e. white noise), there is significant temporal autocorrelation in the time series of all basal species’ abundances (i.e. the spectra of basal species are red-shifted), (ii) the degree of temporal autocorrelation in basal species time series is affected by food web structure and (iii) the degree of temporal autocorrelation tend to be correlated to the extinction risks of basal species.

    Our results emphasize the role of food web structure and species interactions in modifying the response of species to environmental variability. To shed some light on the mechanisms we compare the observed pattern in abundances of basal species with analytically predicted patterns and show that the change in the predicted pattern due to the addition of strong trophic interactions is correlated to the extinction risk of the basal species. We conclude that much remain to be understood about the mechanisms behind the interaction among environmental variability, species interactions, population dynamics and vulnerability before we quantitatively can predict, for example, effects of climate change on species and ecological communities. Here, however, we point out a new possible approach for identifying species that are vulnerable to environmental stochasticity by checking the degree of temporal autocorrelation in the time series of species. Increased autocorrelation in population fluctuations can be an indication of increased extinction risk.

  • 3.
    Karlsson, Patrik
    et al.
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Jonsson, Tomas
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Jonsson, Annie
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Food web structure and interaction strength pave the way for vulnerability to extinction2007In: Journal of Theoretical Biology, ISSN 0022-5193, E-ISSN 1095-8541, Vol. 249, no 1, p. 77-92Article in journal (Refereed)
    Abstract [en]

    This paper focuses on how food web structure and interactions among species affects the vulnerability, due to environmental variability, to extinction of species at different positions in model food webs. Vulnerability is here not measured by a traditional extinction threshold but is instead inspired by the IUCN criteria for endangered species: an observed rapid decline in population abundance. Using model webs influenced by stochasticity with zero autocorrelation, we investigate the ecological determinants of species vulnerability, i.e. the trophic interactions between species and food web structure and how these interact with the risk of sudden drops in abundance of species. We find that (i) producers fulfil the criterion of vulnerable species more frequently than other species, (ii) food web structure is related to vulnerability, and (iii) the vulnerability of species is greater when involved in a strong trophic interaction than when not. We note that our result on the relationship between extinction risk and trophic position of species contradict previous suggestions and argue that the main reason for the discrepancy probably is due to the fact that we study the vulnerability to environmental stochasticity and not extinction risk due to overexploitation, habitat destruction or interactions with introduced species. Thus, we suggest that the vulnerability of species to environmental stochasticity may be differently related to trophic position than the vulnerability of species to other factors.

    Earlier research on species extinctions has looked for intrinsic traits of species that correlate with increased vulnerability to extinction. However, to fully understand the extinction process we must also consider that species interactions may affect vulnerability and that not all extinctions are the result of long, gradual reductions in species abundances. Under environmental stochasticity (which importance frequently is assumed to increase as a result of climate change) and direct and indirect interactions with other species some extinctions may occur rapidly and apparently unexpectedly. To identify the first declines of population abundances that may escalate and lead to extinctions as early as possible, we need to recognize which species are at greatest risk of entering such dangerous routes and under what circumstances. This new perspective may contribute to our understanding of the processes leading to extinction of populations and eventually species. This is especially urgent in the light of the current biodiversity crisis where a large fraction of the world's biodiversity is threatened.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf