his.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Johansson, Ulf
    et al.
    School of Business and Informatics, University of Borås, Borås, Sweden.
    König, Rikard
    School of Business and Informatics, University of Borås, Borås, Sweden.
    Niklasson, Lars
    Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Genetically Evolved kNN Ensembles2009Ingår i: Data Mining: Special Issue in Annals of Information Systems / [ed] Robert Stahlbock, Sven F. Crone, Stefan Lessmann, Springer Science+Business Media B.V., 2009, 1, s. 299-313Kapitel i bok, del av antologi (Övrigt vetenskapligt)
    Abstract [en]

    Both theory and a wealth of empirical studies have established that ensembles are more accurate than single predictive models. For the ensemble approach to work, base classifiers must not only be accurate but also diverse, i.e., they should commit their errors on different instances. Instance-based learners are, however, very robust with respect to variations of a data set, so standard resampling methods will normally produce only limited diversity. Because of this, instance-based learners are rarely used as base classifiers in ensembles. In this chapter, we introduce a method where genetic programming is used to generate kNN base classifiers with optimized k-values and feature weights. Due to the inherent inconsistency in genetic programming (i.e., different runs using identical data and parameters will still produce different solutions) a group of independently evolved base classifiers tend to be not only accurate but also diverse. In the experimentation, using 30 data sets from the UCI repository, two slightly different versions of kNN ensembles are shown to significantly outperform both the corresponding base classifiers and standard kNN with optimized k-values, with respect to accuracy and AUC.

  • 2.
    Johansson, Ulf
    et al.
    Högskolan i Skövde, Institutionen för kommunikation och information. Department of Business and Informatics, University of Borås, Sweden.
    König, Rikard
    Högskolan i Skövde, Institutionen för kommunikation och information. Department of Business and Informatics, University of Borås, Sweden.
    Niklasson, Lars
    Högskolan i Skövde, Institutionen för kommunikation och information.
    The Truth is in There: Rule Extraction from Opaque Models Using Genetic Programming2004Ingår i: Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2004 / [ed] Valerie Barr, Zdravko Markov, AAAI Press, 2004, s. 658-663Konferensbidrag (Övrigt vetenskapligt)
  • 3. Johansson, Ulf
    et al.
    Löfström, Tove
    Högskolan i Skövde, Institutionen för kommunikation och information.
    König, Richard
    Högskolan i Skövde, Institutionen för kommunikation och information.
    Sönströd, Cecilia
    Niklasson, Lars
    Högskolan i Skövde, Institutionen för kommunikation och information.
    Rule Extraction from Opaque Models: A Slightly Different Perspective2006Ingår i: 6th International Conference on Machine Learning and Applications, IEEE Computer Society, 2006, s. 22-27Konferensbidrag (Refereegranskat)
    Abstract [en]

    When performing predictive modeling, the key criterion is always accuracy. With this in mind, complex techniques like neural networks or ensembles are normally used, resulting in opaque models impossible to interpret. When models need to be comprehensible, accuracy is often sacrificed by using simpler techniques directly producing transparent models; a tradeoff termed the accuracy vs. comprehensibility tradeoff. In order to reduce this tradeoff, the opaque model can be transformed into another, interpretable, model; an activity termed rule extraction. In this paper, it is argued that rule extraction algorithms should gain from using oracle data; i.e. test set instances, together with corresponding predictions from the opaque model. The experiments, using 17 publicly available data sets, clearly show that rules extracted using only oracle data were significantly more accurate than both rules extracted by the same algorithm, using training data, and standard decision tree algorithms. In addition, the same rules were also significantly more compact; thus providing better comprehensibility. The overall implication is that rules extracted in this fashion will explain the predictions made on novel data better than rules extracted in the standard way; i.e. using training data only.

  • 4. Johansson, Ulf
    et al.
    Löfström, Tuve
    König, Rikard
    Niklasson, Lars
    Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Accurate Neural Network Ensembles Using Genetic Programming2006Ingår i: Proceedings of SAIS: The 23rd Annual Workshop of the Swedish Artificial Intelligence Society, Swedish Artificial Intelligence Society - SAIS, Umeå universitet , 2006Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Abstract: In this paper we present and evaluate a novel algorithm for ensemble creation. The main idea of the algorithm is to first independently train a fixed number of neural networks (here ten) and then use genetic programming to combine these networks into an ensemble. The use of genetic programming makes it possible to not only consider ensembles of different sizes, but also to use ensembles as intermediate building blocks. The final result is therefore more correctly described as an ensemble of neural network ensembles. The experiments show that the proposed method, when evaluated on 22 publicly available data sets, obtains very high accuracy, clearly outperforming the other methods evaluated. In this study several micro techniques are used, and we believe that they all contribute to the increased performance.

    One such micro technique, aimed at reducing overtraining, is the training method, called tombola training, used during genetic evolution. When using tombola training, training data is regularly resampled into new parts, called training groups. Each ensemble is then evaluated on every training group and the actual fitness is determined solely from the result on the hardest part.

  • 5. Johansson, Ulf
    et al.
    Löfström, Tuve
    König, Rikard
    Niklasson, Lars
    Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Building Neural Network Ensembles using Genetic Programming2006Ingår i: The International Joint Conference on Neural Networks 2006, IEEE Press, 2006, s. 2239-2244Konferensbidrag (Refereegranskat)
    Abstract [en]

    algorithm for ensemble creation. The main idea of the algorithm is to first independently train a fixed number of neural networks (here ten) and then use genetic programming to combine these networks into an ensemble. The use of genetic programming makes it possible to not only consider ensembles of different sizes, but also to use ensembles as intermediate building blocks. The final result is therefore more correctly described as an ensemble of neural network ensembles. The experiments show that the proposed method, when evaluated on 22 publicly available data sets, obtains very high accuracy, clearly outperforming the other methods evaluated. In this study several micro techniques are used, and we believe that they all contribute to the increased performance. One such micro technique, aimed at reducing overtraining, is the training method, called tombola training, used during genetic evolution. When using tombola training, training data is regularly resampled into new parts, called training groups. Each ensemble is then evaluated on every training group and the actual fitness is determined solely from the result on the hardest part.

  • 6.
    Johansson, Ulf
    et al.
    School of Business and Informatics, University of Borås, Sweden.
    Löfström, Tuve
    School of Business and Informatics, University of Borås, Sweden.
    König, Rikard
    School of Business and Informatics, University of Borås, Sweden.
    Niklasson, Lars
    Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Genetically Evolved Trees Representing Ensembles2006Ingår i: Artificial intelligence and soft computing - ICAISC 2006: 8th international conference, Zakopane, Poland, June 25 - 29, 2006 ; proceedings, 2006, s. 613-622Konferensbidrag (Refereegranskat)
    Abstract [en]

    We have recently proposed a novel algorithm for ensemble creation called GEMS (Genetic Ensemble Member Selection). GEMS first trains a fixed number of neural networks (here twenty) and then uses genetic programming to combine these networks into an ensemble. The use of genetic programming makes it possible for GEMS to not only consider ensembles of different sizes, but also to use ensembles as intermediate building blocks. In this paper, which is the first extensive study of GEMS, the representation language is extended to include tests partitioning the data, further increasing flexibility. In addition, several micro techniques are applied to reduce overfitting, which appears to be the main problem for this powerful algorithm. The experiments show that GEMS, when evaluated on 15 publicly available data sets, obtains very high accuracy, clearly outperforming both straightforward ensemble designs and standard decision tree algorithms.

  • 7. Johansson, Ulf
    et al.
    Niklasson, Lars
    Högskolan i Skövde, Institutionen för kommunikation och information.
    König, Rikard
    Accuracy vs. comprehensibility in data mining models2004Ingår i: Proceedings of the Seventh International Conference on Information Fusion: 28 June - 1 July 2004 Stockholm Sweden, 2004, s. 295-300Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    This paper addresses the important issue of the tradeoff between accuracy and comprehensibility in data mining. The paper presents results which show that it is, to some extent, possible to bridge this gap. A method for rule extraction from opaque models (Genetic Rule EXtraction – G-REX) is used to show the effects on accuracy when forcing the creation of comprehensible representations. In addition the technique of combining different classifiers to an ensemble is demonstrated on some well-known data sets. The results show that ensembles generally have very high accuracy, thus making them a good first choice when performing predictive data mining.

  • 8.
    König, Rikard
    Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Predictive Techniques and Methods for Decision Support in Situations with Poor Data Quality2009Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Today, decision support systems based on predictive modeling are becoming more common, since organizations often collect more data than decision makers can handle manually. Predictive models are used to find potentially valuable patterns in the data, or to predict the outcome of some event. There are numerous predictive techniques, ranging from simple techniques such as linear regression, to complex powerful ones like artificial neural networks. Complex models usually obtain better predictive performance, but are opaque and thus cannot be used to explain predictions or discovered patterns. The design choice of which predictive technique to use becomes even harder since no technique outperforms all others over a large set of problems. It is even difficult to find the best parameter values for a specific technique, since these settings also are problem dependent. One way to simplify this vital decision is to combine several models, possibly created with different settings and techniques, into an ensemble. Ensembles are known to be more robust and powerful than individual models, and ensemble diversity can be used to estimate the uncertainty associated with each prediction.

    In real-world data mining projects, data is often imprecise, contain uncertainties or is missing important values, making it impossible to create models with sufficient performance for fully automated systems. In these cases, predictions need to be manually analyzed and adjusted. Here, opaque models like ensembles have a disadvantage, since the analysis requires understandable models. To overcome this deficiency of opaque models, researchers have developed rule extraction techniques that try to extract comprehensible rules from opaque models, while retaining sufficient accuracy.

    This thesis suggests a straightforward but comprehensive method for predictive modeling in situations with poor data quality. First, ensembles are used for the actual modeling, since they are powerful, robust and require few design choices. Next, ensemble uncertainty estimations pinpoint predictions that need special attention from a decision maker. Finally, rule extraction is performed to support the analysis of uncertain predictions. Using this method, ensembles can be used for predictive modeling, in spite of their opacity and sometimes insufficient global performance, while the involvement of a decision maker is minimized.

    The main contributions of this thesis are three novel techniques that enhance the performance of the purposed method. The first technique deals with ensemble uncertainty estimation and is based on a successful approach often used in weather forecasting. The other two are improvements of a rule extraction technique, resulting in increased comprehensibility and more accurate uncertainty estimations.

  • 9.
    König, Rikard
    et al.
    Högskolan i Skövde, Institutionen för kommunikation och information.
    Johansson, Ulf
    Niklasson, Lars
    Högskolan i Skövde, Institutionen för kommunikation och information.
    Increasing rule extraction comprehensibility2006Ingår i: International Journal of Information Technology and Intelligent Computing, ISSN 1895-8648, Vol. 1, nr 2, s. 303-314Artikel i tidskrift (Refereegranskat)
  • 10. Löfström, Tuve
    et al.
    Johansson, UlfSönströd, CeciliaKönig, RikardNiklasson, LarsHögskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.
    Proceedings of SAIS 2007: The 24th Annual Workshop of the Swedish Artificial Intelligence Society, Borås, May 22-23, 20072007Proceedings (redaktörskap) (Övrigt vetenskapligt)
  • 11.
    Löfström, Tuve
    et al.
    Högskolan i Skövde, Institutionen för kommunikation och information.
    König, Richard
    Högskolan i Skövde, Institutionen för kommunikation och information.
    Johansson, Ulf
    Högskolan i Skövde, Institutionen för kommunikation och information.
    Niklasson, Lars
    Högskolan i Skövde, Institutionen för kommunikation och information.
    Strand, Mattias
    Högskolan i Skövde, Institutionen för kommunikation och information.
    Ziemke, Tom
    Högskolan i Skövde, Institutionen för kommunikation och information.
    Benefits of Relating the Retail Domain to Information Fusion2006Ingår i: 9th International Conference on Information Fusion: IEEE ISIF, IEEE conference proceedings, 2006, s. Article number 4085930-Konferensbidrag (Refereegranskat)
1 - 11 av 11
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf