his.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergman, Christian
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ruiz Castro, Pamela
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Scania AB, Södertälje, Sweden.
    Implementation of Suitable Comfort Model for Posture and Motion Prediction in DHM Supported Vehicle Design2015In: Procedia Manufacturing, ISSN 2351-9789, Vol. 3, p. 3753-3758Article in journal (Refereed)
    Abstract [en]

    Driver-vehicle interaction analyses are done to ensure a successful vehicle design from an ergonomics perspective. Digital Human Modelling (DHM) tools are often used to support such verifications, particularly at early stages of the product development process. When verifying that a vehicle design accommodates the diversity of users and tasks, a DHM tool needs to be able to represent postures and motions that are likely under certain conditions. This functionality is essential so that the tool user will obtain objective and repeatable simulation results. The DHM tool IMMA (Intelligently Moving Manikins) predicts postures and motions by using computational methods. This offers the possibility to generate postures and motions that are unique for the present design conditions. IMMA was originally developed for simulating manual assembly work, whereas the work presented here is a step towards utilizing the IMMA tool for occupant packaging and related tasks. The objective is a tool for virtual verification of driver-vehicle interaction that supports and automates the simulation work to a high degree. The prediction functionality in IMMA is based on the use of optimization algorithms where one important component is the consideration of comfort level. This paper reports results from an basic investigation of driving postures and available comfort models suitable in a driving context, and shows initial results of seated posture and motion prediction functionality in the IMMA tool.

  • 2.
    Bergman, Christian
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ruiz Castro, Pamela
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Industrial Development, Scania CV, Sweden.
    Implementation of Suitable Comfort Model for Posture and Motion Prediction in DHM Supported Vehicle Design2015In: Proceedings of the 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015), AHFE , 2015Conference paper (Refereed)
    Abstract [en]

    Driver-vehicle interaction analyses are done to ensure a successful vehicle design from an ergonomics perspective. Digital Human Modelling (DHM) tools are often used to support such verifications, particularly at early stages of the product development process. When verifying that a vehicle design accommodates the diversity of users and tasks, a DHM tool needs to be able to represent postures and motions that are likely under certain conditions. This functionality is essential so that the tool user will obtain objective and repeatable simulation results. The DHM tool IMMA (Intelligently Moving Manikins) predicts postures and motions by using computational methods. This offers the possibility to generate postures and motions that are unique for the present design conditions. IMMA was originally developed for simulating manual assembly work, whereas the work presented here is a step towards utilizing the IMMA tool for occupant packaging and related tasks. The objective is a tool for virtual verification of driver-vehicle interaction that supports and automates the simulation work to a high degree. The prediction functionality in IMMA is based on the use of optimization algorithms where one important component is the consideration of comfort level. This paper reports results from an basic investigation of driving postures and available comfort models suitable in a driving context, and shows initial results of seated posture and motion prediction functionality in the IMMA tool.

  • 3.
    Högberg, Dan
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ruiz Castro, Pamela
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Mårdberg, Peter
    University of Skövde, School of Engineering Science. Fraunhofer-Chalmers Centre, Gothenburg.
    Delfs, Niclas
    Fraunhofer-Chalmers Centre, Gothenburg.
    Nurbo, Pernilla
    Volvo Car Corporation, Gothenburg.
    Fragoso, Paulo
    Scania CV, Södertälje.
    Andersson, Lina
    Volvo Trucks, Gothenburg.
    Brolin, Erik
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    DHM Based Test Procedure Concept for Proactive Ergonomics Assessments in the Vehicle Interior Design Process2018In: Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018): Volume V: Human Simulation and Virtual Environments / [ed] Sebastiano BagnaraRiccardo TartagliaSara AlbolinoThomas AlexanderYushi Fujita, Cham, Switzerland: Springer, 2018, Vol. 822, p. 314-323Conference paper (Refereed)
    Abstract [en]

    The development of a digital human modelling (DHM) based test procedure concept for the assessment of physical ergonomics conditions in virtual phases of the vehicle interior design process is illustrated and discussed. The objective of the test procedure is to be a valuable tool for ergonomic evaluations and decision support along the design process, so that ergonomic issues can be dealt with in an efficient, objective and proactive manner. The test procedure is devised to support companies in having stable and objective processes, in accordance with lean product development (LPD) philosophies. The overall structure and fundamental functionality of the test procedure concept is explained by a simplified use case, utilizing the DHM tool IPS IMMA to: define manikin families and manikin tasks; predict manikin motions; and visualize simulations and ergonomics evaluation outcomes.

  • 4.
    Iriondo Pascual, Aitor
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Kolbeinsson, Ari
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ruiz Castro, Pamela
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Mahdavian, Nafise
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Scania CV, Södertalje, Sweden.
    Proposal of an Intuitive Interface Structure for Ergonomics Evaluation Software2018In: Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018): Volume VIII: Ergonomics and Human Factors in Manufacturing, Agriculture, Building and Construction, Sustainable Development and Mining / [ed] Sebastiano Bagnara, Riccardo Tartaglia, Sara Albolino, Thomas Alexander, Yushi Fujita, Cham: Springer, 2018, Vol. 825, p. 289-300Conference paper (Refereed)
    Abstract [en]

    Nowadays, different technologies and software for ergonomics evaluations are gaining greater relevance in the field of ergonomics and production development. The tools allow users such as ergonomists and engineers to perform assessments of ergonomic conditions of work, both related to work simulated in digital human modelling (DHM) tools or based on recordings of work performed by real operators. Regardless of approach, there are many dimensions of data that needs to be processed and presented to the users.

    The users may have a range of different expectations and purposes from reading the data. Examples of situations are to: judge and compare different design solutions; analyse data in relation to anthropometric differences among subjects; investigate different body regions; assess data based on different time perspectives; and to perform assessments according to different types of ergonomics evaluation methods. The range of different expectations and purposes from reading the data increases the complexity of creating an interface that considers all the necessary tools and functions that the users require, while at the same time offer high usability.

    This paper focuses on the structural design of a flexible and intuitive interface for an ergonomics evaluation software that possesses the required tools and functions to analyse work situations from different perspectives, where the data input can be either from DHM tools or from real operators while performing work. 

  • 5.
    Mahdavian, Nafise
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ruiz Castro, Pamela
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Brolin, Erik
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Industrial Development, Scania, Södertälje, Sweden.
    Digital human modelling in a virtual environment of CAD parts and a point cloud2017In: Proceedings of the 5th International Digital Human Modeling Symposium / [ed] Sascha Wischniewski & Thomas Alexander, Federal Institute for Occupational Safety and Health , 2017, p. 283-291Conference paper (Refereed)
    Abstract [en]

    Manual assembly is a time and cost consuming phase of production. It is crucial to design the assembly process so that overall system efficiency, quality output and human well-being meet desired levels. Since manual assembly involve humans, one support in the production design process is to use digital human modelling (DHM) tools to model and assess different design scenarios prior to the actual production process. In the traditional way, various CAD tools are used by engineers to model the production layout and the workstations. Then, these models typically are imported into a DHM tool to simulate human work, and to apply ergonomic evaluation methods on the simulated work tasks. This work, supported by CAD and DHM, can be a time consuming and iterative process as precise information and measurements of the actual assembly environment are needed, e.g. related to actual geometries of factory premises or of facilities surrounding the workstations. However, introducing point cloud scanning technology can provide the user with a more correct and realistic virtual representation of the environment, which allows for a faster and more precise design process.The aim of this paper is to present the developments and capabilities of the DHM tool IPS IMMA (Intelligently Moving Manikins) in an assembly process and in a virtual environment provided by point cloud scanning.

  • 6.
    Ruiz Castro, Pamela
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ramsen, Håkan
    Volvo Trucks, Gothenburg, Sweden.
    Bjursten, Jenny
    Volvo Trucks, Gothenburg, Sweden.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Industrial Development, Scania, Södertälje, Sweden.
    Virtual Simulation of Human-Robot Collaboration Workstations2019In: Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018): Volume V: Human Simulation and Virtual Environments, Work With Computing Systems (WWCS), Process Control / [ed] Sebastiano Bagnara, Riccardo Tartaglia, Sara Albolino, Thomas Alexander, Yushi Fujita, Springer, 2019, Vol. 822, p. 250-261Conference paper (Refereed)
    Abstract [en]

    The constant call in manufacturing for higher quality, efficiency, flexibility and cost effective solutions has been supported by technology developments and revised legislations in the area of collaborative robots. This allows for new types of workstations in industry where robots and humans co-operate in performing tasks. In addition to safety, the design of such collaborative workstations needs to consider the areas of ergonomics and task allocation to ensure appropriate work conditions for the operators, while providing overall system efficiency. The aim of this study is to illustrate the development and use of an integrated robot simulation and digital human modelling (DHM) tool, which is aimed to be a tool for engineers to create and confirm successful collaborative workstations. An assembly scenario from the vehicle industry was selected for its redesign into a collaborative workstation. The existing scenario as well as potential collaborative concepts are simulated and assessed using a version of the simulation tool IPS IMMA. The assembly use case illustrates the capabilities of the tool to represent and evaluate collaborative workstations in terms of ergonomics and efficiency assessments.

  • 7.
    Ruiz Castro, Pamela
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Mahdavian, Nafise
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Brolin, Erik
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Industrial Development, Scania, Södertälje, Sweden.
    IPS IMMA for designing human-robot collaboration workstations2017In: Proceedings of the 5th International Digital Human Modeling Symposium / [ed] Sascha Wischniewski & Thomas Alexander, Federal Institute for Occupational Safety and Health , 2017, p. 263-273Conference paper (Refereed)
    Abstract [en]

    The global competition has forced manufacturing companies to further increase their productivity. This, together with technology development and changes in regulations, have led to the introduction of new types of workstations in production lines, where human operators collaborate with industrial robots to perform work tasks. As any type of product, these workstations need to be designed in the most optimal way to deliver the expected value. In the design process of these collaborative workstations, separate virtual simulations of industrial robots and human operators can be made with multiple commercial software. Separate simulations reduce the efficiency of the design process and makes it harder to identify successful design solutions. Hence, there is a need for software tools that are capable of simultaneous simulation of the human-robot collaboration in a workstation. Providing engineers with such tools will assist their tasks to optimize the human and robot workflow, while proactively ensuring proper ergonomic conditions for operators.This paper describes and illustrates how the digital human modelling (DHM) tool IPS IMMA can aid in the design of human-robot collaboration workstations. A use case where the human operator collaborates with a robot to produce a section of a pedal car in a virtual scenario is described. The use case illustrates the current capabilities and limitations of the software to simulate human-robot collaborations in workstations. Hence, the use case aims to provide input for further development of DHM tools aimed to assist the design of human-robot collaboration workstations.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf