his.sePublications
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Durán, Boris
    et al.
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Lee, Gauss
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Learning a DFT-based sequence with reinforcement learning: A NAO implementation2012In: Paladyn - Journal of Behavioral Robotics, ISSN 2080-9778, E-ISSN 2081-4836, Vol. 3, no 4, p. 181-187Article in journal (Refereed)
  • 2.
    Lee, Gauss
    et al.
    University of Skövde, School of Humanities and Informatics.
    Lowe, Robert
    University of Skövde, School of Humanities and Informatics.
    Ziemke, Tom
    University of Skövde, School of Humanities and Informatics.
    Modelling Early Infant Walking: Testing a Generic CPG Architecture on the NAO Humanoid2011Conference paper (Refereed)
    Abstract [en]

    In this article, a simple CPG network is shown to model early infant walking, in particular the onset of independent walking. The difference between early infant walking and early adult walking is addressed with respect to the underlying neurophysiology and evaluated according to gait attributes. Based on this, we successfully model the early infant walking gait on the NAO robot and compare its motion dynamics and performance to those of infants. Our model is able to capture the core properties of early infant walking. We identify differences in the morphologies between the robot and infant and the effect of this on their respective performance. In conclusion, early infant walking can be seen to develop as a function of the CPG network and morphological characteristics.

  • 3.
    Li, Cai
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Bredies, Katharina
    Department of Design, Faculty of Textiles, Engineering and Business, University of Borås, Sweden.
    Lund, Anja
    Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Sweden.
    Nierstrasz, Vincent
    Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Sweden.
    Hemeren, Paul
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    k-Nearest-Neighbour based Numerical Hand Posture Recognition using a Smart Textile Glove2015In: AMBIENT 2015: The Fifth International Conference on Ambient Computing, Applications, Services and Technologies / [ed] MaartenWeyn, International Academy, Research and Industry Association (IARIA), 2015, p. 36-41Conference paper (Refereed)
    Abstract [en]

    In this article, the authors present an interdisciplinary project that illustrates the potential and challenges in dealing with electronic textiles as sensing devices. An interactive system consisting of a knitted sensor glove and electronic circuit and a numeric hand posture recognition algorithm based on k-nearestneighbour (kNN) is introduced. The design of the sensor glove itself is described, considering two sensitive fiber materials – piezoresistive and piezoelectric fibers – and the construction using an industrial knitting machine as well as the electronic setup is sketched out. Based on the characteristics of the textile sensors, a kNN technique based on a condensed dataset has been chosen to recognize hand postures indicating numbers from one to five from the sensor data. The authors describe two types of data condensation techniques (Reduced Nearest Neighbours and Fast Condensed Nearest Neighbours) in order to improve the data quality used by kNN, which are compared in terms of run time, condensation rate and recognition accuracy. Finally, the article gives an outlook on potential application scenarios for sensor gloves in pervasive computing.

  • 4.
    Li, Cai
    et al.
    University of Skövde, School of Humanities and Informatics.
    Lowe, Robert
    University of Skövde, School of Humanities and Informatics.
    Duran, Boris
    University of Skövde, School of Humanities and Informatics.
    Ziemke, Tom
    University of Skövde, School of Humanities and Informatics.
    Humanoids that crawl: Comparing gait performance of iCub and NAO using a CPG architecture2011In: Proceedings - 2011 IEEE International Conference on Computer Science and Automation Engineering, CSAE 2011 / [ed] Shaozi Li, Ying Dai, IEEE conference proceedings, 2011, p. 577-582Conference paper (Refereed)
    Abstract [en]

    In this article, a generic CPG architecture is used to model infant crawling gaits and is implemented on the NAO robot platform. The CPG architecture is chosen via a systematic approach to designing CPG networks on the basis of group theory and dynamic systems theory. The NAO robot performance is compared to the iCub robot which has a different anatomical structure. Finally, the comparison of performance and NAO whole-body stability are assessed to show the adaptive property of the CPG architecture and the extent of its ability to transfer to different robot morphologies. © 2011 IEEE.

  • 5.
    Li, Cai
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Ziemke, Tom
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. Department of Computer and Information Science, Linköping University, Sweden.
    A Novel Approach to Locomotion Learning: Actor-Critic Architecture using Central Pattern Generators and Dynamic Motor Primitives2014In: Frontiers in Neurorobotics, ISSN 1662-5218, Vol. 8, article id 23Article in journal (Refereed)
  • 6.
    Li, Cai
    et al.
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Ziemke, Tom
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Crawling Posture Learning in Humanoid Robots using a Natural-Actor Critic CPG Architecture2013In: Advances in Artificial Life, ECAL 2013: Proceedings of the twelfth European Conference on the Synthesis and Simulation of Living Systems, 2013, p. 1182-1190Conference paper (Refereed)
  • 7.
    Li, Cai
    et al.
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Ziemke, Tom
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Humanoids learning to crawl based on Natural CPG-Actor-Critic and Motor Primitives2013In: Proceedings of the IROS 2013 Workshopon Neuroscience and Robotics: Towards a robot-enabled,Neuroscience-guided healthy society, 2013, p. 7-15Conference paper (Refereed)
  • 8.
    Li, Cai
    et al.
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Ziemke, Tom
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Humanoids learning to walk: a natural CPG-actor-critic architecture2013In: Frontiers in Neurorobotics, ISSN 1662-5218, Vol. 7, no 5Article in journal (Refereed)
    Abstract [en]

    The identification of learning mechanisms for locomotion has been the subject of much research for some time but many challenges remain. Dynamic systems theory (DST) offers a novel approach to humanoid learning through environmental interaction. Reinforcement learning (RL) has offered a promising method to adaptively link the dynamic system to the environment it interacts with via a reward-based value system. In this paper, we propose a model that integrates the above perspectives and applies it to the case of a humanoid (NAO) robot learning to walk the ability of which emerges from its value-based interaction with the environment. In the model, a simplified central pattern generator (CPG) architecture inspired by neuroscientific research and DST is integrated with an actor-critic approach to RL (cpg-actor-critic). In the cpg-actor-critic architecture, least-square-temporal-difference based learning converges to the optimal solution quickly by using natural gradient learning and balancing exploration and exploitation. Futhermore, rather than using a traditional (designer-specified) reward it uses a dynamic value function as a stability indicator that adapts to the environment. The results obtained are analyzed using a novel DST-based embodied cognition approach. Learning to walk, from this perspective, is a process of integrating levels of sensorimotor activity and value.

  • 9.
    Li, Cai
    et al.
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Ziemke, Tom
    University of Skövde, School of Humanities and Informatics. University of Skövde, The Informatics Research Centre.
    Modelling Walking Behaviors Based on CPGs: A Simplified Bio-inspired Architecture2012In: From Animals to Animats 12: 12th International Conference on Simulation of Adaptive Behavior, SAB 2012Odense, Denamark, August 27-30, 2012 / [ed] Tom Ziemke, Christian Balkenius, John Hallam, Berlin, Heidelberg: Springer Berlin/Heidelberg, 2012, p. 156-166Conference paper (Refereed)
    Abstract [en]

    In this article, we use a recurrent neural network including four-cell core architecture to model the walking gait and implement it with the simulated and physical NAO robot. Meanwhile, inspired by the biological CPG models, we propose a simplified CPG model which comprises motorneurons, interneurons, sensor neurons and the simplified spinal cord. Within this model, the CPGs do not directly output trajectories to the servo motors. Instead, they only work to maintain the phase relation among ipsilateral and contralateral limbs. The final output is dependent on the integration of CPG signals, outputs of interneurons, motor neurons and sensor neurons (sensory feedback).

  • 10.
    Syrén, Felicia
    et al.
    Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden.
    Li, Cai
    University of Skövde, School of Informatics.
    Billing, Erik
    University of Skövde, School of Informatics.
    Lund, Anja
    Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden.
    Nierstrasz, Vincent
    Textile Materials Technology, Department of Textile Technology, Faculty of Textiles, Engineering and Business, University of Borås, Borås, Sweden.
    Characterization of textile resistive strain sensors2016Conference paper (Other academic)
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf