his.sePublications
Change search
Refine search result
123 1 - 50 of 103
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bergman, Christian
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Swerea IVF AB, Stockholm.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Moestam, Lena
    Volvo Trucks GTT, Gothenburg.
    A tool to assist and evalute workstation design2013In: Proceedings of NES 2013, 45th Nordic Ergonomics & Human Factors Society conference, Iceland, August 2013, 2013Conference paper (Refereed)
    Abstract [en]

    It can be argued that it is common that industrial workstations are “built” rather than purposefully designed with user and task requirements in mind. Afterwards, built-in problems typically need to be corrected, causing undesired costs and efforts. With the objective to assist workstation designers in avoiding most problems already in the design phase, a design support tool is being developed. The paper argues the need for such a tool and presents the fundamental tool functionality. Expected advantages are more efficient and ergonomic workstations and a more efficient design process with built-in learning and documentation.

  • 2.
    Bergman, Christian
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Bäckstrand, Gunnar
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Swerea IVF AB, Gothernburg, Sweden.
    Moestam, Lena
    Volvo Group Trucks Operations, Gothenburg, Sweden.
    A Library Based Tool to Assist the Generative Activity in Workstation Design2014In: Advances in Ergonomics in Design, Usability & Special Populations: Part II / [ed] Francisco Rebelo and Marcelo Soares, AHFE Conference , 2014, p. 206-214Conference paper (Refereed)
  • 3.
    Bergman, Christian
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ruiz Castro, Pamela
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Industrial Development, Scania CV, Sweden.
    Implementation of Suitable Comfort Model for Posture and Motion Prediction in DHM Supported Vehicle Design2015In: Proceedings of the 6th International Conference on Applied Human Factors and Ergonomics (AHFE 2015), AHFE , 2015Conference paper (Refereed)
    Abstract [en]

    Driver-vehicle interaction analyses are done to ensure a successful vehicle design from an ergonomics perspective. Digital Human Modelling (DHM) tools are often used to support such verifications, particularly at early stages of the product development process. When verifying that a vehicle design accommodates the diversity of users and tasks, a DHM tool needs to be able to represent postures and motions that are likely under certain conditions. This functionality is essential so that the tool user will obtain objective and repeatable simulation results. The DHM tool IMMA (Intelligently Moving Manikins) predicts postures and motions by using computational methods. This offers the possibility to generate postures and motions that are unique for the present design conditions. IMMA was originally developed for simulating manual assembly work, whereas the work presented here is a step towards utilizing the IMMA tool for occupant packaging and related tasks. The objective is a tool for virtual verification of driver-vehicle interaction that supports and automates the simulation work to a high degree. The prediction functionality in IMMA is based on the use of optimization algorithms where one important component is the consideration of comfort level. This paper reports results from an basic investigation of driving postures and available comfort models suitable in a driving context, and shows initial results of seated posture and motion prediction functionality in the IMMA tool.

  • 4.
    Bergman, Christian
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ruiz Castro, Pamela
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Scania AB, Södertälje, Sweden.
    Implementation of Suitable Comfort Model for Posture and Motion Prediction in DHM Supported Vehicle Design2015In: Procedia Manufacturing, ISSN 2351-9789, Vol. 3, p. 3753-3758Article in journal (Refereed)
    Abstract [en]

    Driver-vehicle interaction analyses are done to ensure a successful vehicle design from an ergonomics perspective. Digital Human Modelling (DHM) tools are often used to support such verifications, particularly at early stages of the product development process. When verifying that a vehicle design accommodates the diversity of users and tasks, a DHM tool needs to be able to represent postures and motions that are likely under certain conditions. This functionality is essential so that the tool user will obtain objective and repeatable simulation results. The DHM tool IMMA (Intelligently Moving Manikins) predicts postures and motions by using computational methods. This offers the possibility to generate postures and motions that are unique for the present design conditions. IMMA was originally developed for simulating manual assembly work, whereas the work presented here is a step towards utilizing the IMMA tool for occupant packaging and related tasks. The objective is a tool for virtual verification of driver-vehicle interaction that supports and automates the simulation work to a high degree. The prediction functionality in IMMA is based on the use of optimization algorithms where one important component is the consideration of comfort level. This paper reports results from an basic investigation of driving postures and available comfort models suitable in a driving context, and shows initial results of seated posture and motion prediction functionality in the IMMA tool.

  • 5.
    Bertilsson, Erik
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Gustafsson, E.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Hanson, L.
    Chalmers University of Technology.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Swedish engineering anthropometric web resource2011In: Proceedings of the 43rd Annual Nordic Ergonomics Society Conference / [ed] Juha Lindfors Merja Savolainen, Seppo Väyrynen, University of Oulu , 2011, p. 442-446Conference paper (Refereed)
    Abstract [en]

    Anthropometry, the study of human measurements, is central in the design of products and workplaces. This paper describes how Swedish anthropometric data is made available through a web page (www.antropometri.se) intended to be used by designers and engineers when developing new products and workplaces. With the anthropometric web resource it is possible to get mean and standard deviation values, and to calculate percentile values, for a number of anthropometric measurements. Further functionality on the web page enables simultaneous consideration of several anthropometric measurements. The web page also contains guidelines for how to use anthropometric data depending on the design task at hand.

  • 6.
    Bertilsson, Erik
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Hanson, L.
    Chalmers University of Technology.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Rhén, Ida-Märta
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Creation of the IMMA manikin with consideration of anthropometric diversity2011In: Proceedings of the 21st International Conference on Production Research (ICPR), Fraunhofer Verlag , 2011Conference paper (Refereed)
    Abstract [en]

    Digital human modelling (DHM) systems are used to simulate production processes and analyse the human-machine interaction, particularly at early development stages. Consideration of anthropometric variation is central in DHM simulations due to the necessity of ensuring intended accommodation levels. This paper describes the process of how digital human models are created and defined within the IMMA software. The process begins with the definition of a number of key measurements, which acts as the basis for the definition of several boundary manikins using a confidence ellipsoid methodology. These manikins represents the appropriate confidence region and hence the anthropometric diversity. Key measurements are then entered into regression equations to define the complete set of measurements for each manikin. These measurements are based on the appropriate ISO-standard. Finally, measurements are used to define the size and alignment of each segment in the biomechanical model of the manikin. The manikins are then used to automatically simulate and analyse human-machine interaction.

  • 7.
    Bertilsson, Erik
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Hanson, L.
    Chalmers University of Technology.
    Wondmagegne, Y.
    University of Skövde.
    Multidimensional consideration of anthropometric diversity2011In: Proceedings of DHM, First International Symposium on Digital Human Modeling, Université Claude Bernard Lyon , 2011Conference paper (Refereed)
    Abstract [en]

    Boundary manikins, the concept of creating statistically extreme cases to accommodate a big part of the less extreme population has been known for decades. Despite this, many ergonomics simulations are done with few human models. This fact can be explained by the time consuming processes when working with many manikins in current digital human modelling (DHM) tools, but may also be a result of difficulty to understand how these manikins are calculated and defined. This paper focuses on the method of defining boundary manikins and how that functionality can be integrated into a DHM tool. Examples of boundary case methods in the literature often use Principal Component Analysis (PCA) which makes it possible to reduce the dimensions of the problem without much loss of the variance of the analysed data. Using PCA often demands some extent of manual analysis at the critical stage of reducing dimensions. This paper will explain a similar methodology for ceating boundary manikins from any number of variables, i.e. anthropometric variables chosen as key measurements. This method of creating a group of manikins is intended to be used in an automatic simulation feature in the IMMA software being developed in the associated research project. By using the method, a confidence region in the standardized space is created from eigenvectors and scaled eigenvalues of a correlation matrix. Boundary manikins are chosen at the ends of the axes of the enclosing confidence region, and one manikin of mean values is also added to the group of manikins. In the method presented here, the number of manikins created depends directly on the number of variables, which lead to the fact that the decision making of which key measurements to consider has to be done carefully to not create an overwhelming number of manikins. In comparison with one method using PCA, the method presented in this paper creates more manikins with a bigger difference in the max and min values of the chosen key measurements. If a limited number of cases are of crucial interest, then using PCA to reduce the dimensions of the problem is a good method to use. But if it is possible to create automated simulations the limitation of the number of manikins might not be so important. This will, though, depend heavily on the speed of the automated simulations.

  • 8.
    Bertilsson, Erik
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Hanson, Lars
    Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden.
    Digital Human Model Module and Work Process for Considering Anthropometric Diversity2010In: Proceedings of the 3rd Applied Human Factors and Ergonomics (AHFE) International Conference / [ed] Gavriel Salvendy, Waldemar Karwowski, Louisville: AHFE International , 2010Conference paper (Refereed)
    Abstract [en]

    In digital human modelling (DHM), ergonomics evaluations are typically done with few human models. However, humans vary a lot in sizes and shapes. Therefore, few manikins can rarely ensure accommodation of an entire target population. Different approaches exist on how to consider anthropometric diversity. This paper reviews current  DHM  tools  and  clarify  problems  and  opportunities  when  working  with anthropometric diversity. The aim is to suggest  functionality  for a state of the art DHM  module  and  work  process  for  considering  anthropometric  diversity.  The study is done by an analysis of some of the current DHM systems and by interviews of  personnel  at  car  companies  about  their  way  of  working  with  anthropometric diversity. The study confirmed that critical production simulations are often done in early development stages with only one or a few human models. The reason for this is claimed to be time consuming processes, both at the creation of the human model but  mainly  when  correctly  positioning  the  model  in  the  CAD  environment.  The development  of  a  new  method  and  work  process  for  considering  anthropometric diversity is suggested. Necessary features for such a module are that it shall be easy to use and not require expert knowledge about the consideration of anthropometric diversity. It shall also be configurable and transparent, in a sense that it should be possible  to  work  with  own  anthropometric  data  and  ergonomics  evaluation standards. The module has to be flexible and have different entrances depending on the type of anthropometric problem being analyzed. An improved work method is expected to lead to faster and more correct analyses.

  • 9.
    Bertilsson, Erik
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    Chalmers University of Technology.
    Using experimental design to define boundary manikins2012In: Work: A Journal of Prevention, Assessment and Rehabilitation, ISSN 1051-9815, Vol. 41, p. 4598-4605Article in journal (Refereed)
    Abstract [en]

    When evaluating human-machine interaction it is central to consider anthropometric diversity to ensure intended accommodation levels. A well-known method is the use of boundary cases where manikins with extreme but likely measurement combinations are derived by mathematical treatment of anthropometric data. The supposition by that method is that the use of these manikins will facilitate accommodation of the expected part of the total, less extreme, population. In literature sources there are differences in how many and in what way these manikins should be defined. A similar field to the boundary case method is the use of experimental design in where relationships between affecting factors of a process is studied by a systematic approach. This paper examines the possibilities to adopt methodology used in experimental design to define a group of manikins. Different experimental designs were adopted to be used together with a confidence region and its axes. The result from the study shows that it is possible to adapt the methodology of experimental design when creating groups of manikins. The size of these groups of manikins depends heavily on the number of key measurements but also on the type of chosen experimental design.

  • 10.
    Bertilsson, Erik
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society. Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Keyvani, Ali
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden / Innovatum AB, Trollhättan, Sweden.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Hanson, Lars
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden.
    Assessment of manikin motions in IMMA2012In: Advances in Applied Human Modeling and Simulation / [ed] Vincent G. Duffy, Boca Raton: CRC Press, 2012, p. 235-244Chapter in book (Refereed)
    Abstract [en]

    When evaluating human-machine interaction in a virtual environment using Digital human modelling (DHM) it is important to ensure that the predicted motions lie within the range of behavioural diversity for different people within a population. This paper presents a study in which a comparison is made between motions predicted by the DHM tool IMMA (Intelligently Moving Manikin) and motions from real humans stored in a motion database. Results show similar motions but the predicted motions were in total statistically significantly different compared to the motions performed by real persons. The differences are most likely due to the balance function and joint constraints that the IMMA tool uses for predicting motions. Differences can also be due to other factors, aside of body size, such as age, gender or strength that affects the movement behaviour.

  • 11.
    Bertilsson, Erik
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Svensson, Erik
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Hanson, Lars
    Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden.
    Use of digital human modelling and consideration of anthropometric diversity in Swedish industry2010In: Proceedings of the 42nd annual Nordic Ergonomic Society Conference, 2010Conference paper (Refereed)
    Abstract [en]

    This  paper  study  and  clarify  problems,  needs  and  opportunities  when  working  with anthropometric  diversity  in  digital  human  modelling  (DHM)  systems.  A  comparison between  product  development  and  production  development  in  Swedish  automotive industry is made. Interviews with DHM users and ergonomics specialists about their way of working with anthropometric diversity confirmed that simulations are often done with only one or  a  few  human models.  The reason for  this  is  claimed  to  be  time  consuming processes, both at the creation of the human model but mainly when correctly positioning the model in the CAD environment.

  • 12.
    Björkenstam, Staffan
    et al.
    Geometry and Motion Planning group, Fraunhofer-Chalmers Center, Göteborg, Sweden.
    Nyström, Johan
    Geometry and Motion Planning group, Fraunhofer-Chalmers Center, Göteborg, Sweden.
    Carlson, Johan S.
    Geometry and Motion Planning group, Fraunhofer-Chalmers Center, Göteborg, Sweden.
    Roller, Michael
    Department of Mathematical Methods in Dynamics and Durability, Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany.
    Linn, Joachim
    Department of Mathematical Methods in Dynamics and Durability, Fraunhofer Institute for Industrial Mathematics, Kaiserslautern, Germany.
    Hanson, Lars
    Scania AB, Södertälje, Sweden.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Leyendecker, Sigrid
    Chair of Applied Dynamics, University of Erlangen-Nuremberg, Germany.
    A framework for motion planning of digital humans using discrete mechanics and optimal control2017In: Proceedings of the 5th International Digital Human Modeling Symposium / [ed] Sascha Wischniewski & Thomas Alexander, Federal Institute for Occupational Safety and Health , 2017, p. 64-71Conference paper (Refereed)
    Abstract [en]

    In this paper we present a framework for digital human modelling using discrete mechanics and optimal control. Discrete mechanics is particularly well suited for modelling the dynamics of constrained mechanical systems, which is almost always the case when considering complex human models interacting with the environment. We demonstrate that, by using recently developed recursive dynamics algorithms, we are able to efficiently use discrete mechanics in direct optimal control methods to plan for complex motions. Besides a proper mechanical model, an appropriate objective function is paramount to achieve realistic motions as a solution to an optimal control problem. Hence, several different objective functions, such as for example minimum time or minimum applied torque over the joints, are compared, and the resulting motions are analyzed and evaluated. To further improve the model, we include basic muscular models for the muscles of the shoulder, arm and wrist, and examine how this affects the motions.

  • 13.
    Blomé, Mikael
    et al.
    Lunds Universitet.
    Dukic, Tania
    Chalmers.
    Hanson, Lars
    Lunds Universitet.
    Högberg, Dan
    University of Skövde, School of Engineering Science.
    Web-Based Protocol for Human Simulation Process and Documentation2003Conference paper (Other academic)
  • 14.
    Blomé, Mikael
    et al.
    Lund University.
    Hanson, Lars
    Lund University.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    Jönsson, Maria
    Arjo R&D Center.
    Lundström, Daniel
    CARAN AB .
    Lämkull, Dan
    Volvo Car Corporation.
    Visualisation of Human Characteristics in Vehicle and Health Care Product Development2007In: 2007 year’s SIGRAD conference: Uppsala University, 2007, November 29-30, Linköping University Electronic Press, 2007, p. 31-34Conference paper (Refereed)
    Abstract [en]

    The purpose of the research project described in this paper is to improve the efficiency of product development processes by exchanging knowledge and experiences about user centred design methods and technologies between the two branches: vehicle and health care industries. The health care industry can benefit from visualisation and simulation tools that include computer manikins, a physical representation of the human, and the vehicle industry can benefit from manikins having personal characteristics, which has proven to be successful in the health care industry.

  • 15.
    Bohlin, R.
    et al.
    Fraunhofer-Chalmers Research Centre for Industrial Mathematics.
    Delfs, N.
    Fraunhofer-Chalmers Research Centre for Industrial Mathematics.
    Hanson, L.
    Chalmers University of Technology.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Carlson, J.S.
    Fraunhofer-Chalmers Research Centre for Industrial Mathematics.
    Unified solution of manikin physics and positioning - Exterior root by introduction of extra parameters2011In: Proceedings of DHM, First International Symposium on Digital Human Modeling, Université Claude Bernard Lyon , 2011Conference paper (Refereed)
    Abstract [en]

    Simulating manual assembly operations considering ergonomic load and clearance demands requires detailed modeling of human body kinematics and motions, as well as a tight coupling to powerful algorithms for collision-free path planning. The focus in this paper is kinematics including balance and contact forces, and ergonomically preferable motions in free space. A typical manikin has more than 100 degrees of freedom. To describe operations and facilitate motion generation, the manikin is equipped with coordinate frames attached to end-effectors like hands and feet. The inverse kinematic problem is to find joint values such that the position and orientation of hands and feet matches certain target frames during an assembly motion. This inverse problem leads to an underdetermined system of equations since the number of joints exceeds the end-effectors' constraints. Due to this redundancy there exist a set of solutions, allowing us to consider ergonomics aspects and maximizing comfort when choosing one solution.The most common approach to handle both forward and inverse kinematics is building a hierarchy of joints and links where one root must be defined. A popular place to define the root is in a body part, e.g. in a foot. This leads to a two-step procedure; (i) one level determining when to re-root when moving the root part, (ii) then the Penrose pseudoinverse is used to match the end-effectors' constraints.In this paper we propose using a fixed exterior root by introducing six additional parameters positioning the lower lumbar - three rotations and three translations. This makes it possible to reposition the manikin without a series of re-rooting operations. Another important aspect is to keep the manikin, affected by internal and external forces and moments, in balance. However, by utilizing the exterior root and its added degrees of freedom it is possible to solve the balance, positioning, contact force and comfort problems simultaneously in a unified way. A manikin was implemented, and two test cases demonstrate the applicability of the presented method.

  • 16.
    Bohlin, R.
    et al.
    Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden.
    Delfs, N.
    Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden.
    Hanson, Lars
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Carlson, J. S.
    Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Gothenburg, Sweden.
    Automatic creation of virtual manikin motions maximizing comfort in manual assembly processes2012In: Technologies and Systems for Assembly Quality, Productivity and Customization: Proceedings of the 4th CIRP Conference on Assembly Technologies and Systems / [ed] S. Jack Hu, Conference on Assembly Technologies & Systems (CIRP), 2012, p. 209-212Conference paper (Refereed)
    Abstract [en]

    Effective simulation of manual assembly operations considering ergonomic load and clearance demands requires detailed modeling of human body kinematics and motions, as well as a tight coupling to powerful algorithms for collision-free path planning. The focus in this paper is a unified solution that automatically creates assembly motions for manikins taking kinematic constraints, balance, contact forces, collision avoidance and comfort into account. The manikin used in this work has 162 degrees of freedom - six exterior fictitious joints determine the position of the lower lumbar and the remaining ones are interior joints. The inverse kinematic problem leads to an underdetermined system allowing us to pick a solution that maximizes a scalar valued comfort function. The comfort function offers a generic way to give preference to certain poses while avoiding others, typically by considering joint limits, forces and moments on joints, and magnitude of contact forces. In order to avoid collisions, poses close to collision are penalized. The method is implemented and demonstrated on two challenging assembly operations taken from the automotive industry.

  • 17.
    Brolin, Anna
    et al.
    University of Skövde, School of Technology and Society.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, School of Humanities and Informatics.
    Case, Keith
    Inadequate presented information and its effect on the cognitive workload2011In: Manufacturing Sustainability: Proceedings of the 28th International Manufacturing Conference (IMC 28) / [ed] Geraghty, J & Young, P, 2011, p. 121-129Conference paper (Refereed)
  • 18.
    Brolin, Anna
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Use of kitting to ease assemblers' cognitive workload2011In: Proceedings of the 43rd Annual Nordic Ergonomics Society Conference, University of Oulu , 2011, p. 77-82Conference paper (Refereed)
    Abstract [en]

    The higher level of product variation in the automotive industry leads to an increasing workload for the assembler that has to search, fetch and assemble all the variants. This puts high demands on the information that is given to the assembler to fulfil the assembly task. This paper describes the impact of information overload and sources, and their influence on the assembler. Through observations conducted in the Swedish automotive industry, the study has shown that the assembly personnel perceive the kit as structured information and that structured kits are able to present distinct information at a certain place to the assembler, which in turn reduces the searching, resulting in decreased cognitive workload.

  • 19.
    Brolin, Anna
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Bäckstrand, Gunnar
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Thorvald, Peter
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Kitting as an information source in manual assembly2012In: Advances in Ergonomics in Manufacturing / [ed] Stefan Trzcieliński & Waldemar Karwowski, CRC Press, 2012, p. 346-353Chapter in book (Refereed)
    Abstract [en]

    In manual assembly, a strategy to meet the goal of efficient production is the increased use of kitting as a material supply principle. Even though kitting is already implemented in industry, there are still uncertainties regarding the effects of introducing kits, particularly from a human factors perspective.

    This paper presents initial steps in the development of a method to be used for the evaluation of kitting. This from an information source point of view and for studying effects related to productivity and quality. The methodology is projected to act as a foundation for how to carry out a subsequent comprehensive case study. The purpose of the case study is to explore how kitting affects the cognitive workload compared to the ordinary material rack combined with part numbers used in the current manufacturing industry. This is done by measuring productivity; time spent on assembling a product, and quality; number of assembly errors. One step in the methodology development process, which is described in this paper, was to conduct a pilot study, primarily to test the methodology related to the selection of measurement parameters, as well as for getting experiences from running the methodology with real test subjects.

  • 20.
    Brolin, Erik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Hanson, Lars
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Digital human arm models with variation in size, strength and range of motion2014In: / [ed] Masaaki Mochimaru and Makiko Kouchi, 2014Conference paper (Refereed)
    Abstract [en]

    Digital human modelling (DHM) systems can be used to simulate production processes and analyse the human-machine interaction, particularly at early design stages. The human-machine interaction is affected and limited by factors or characteristics belonging to the human user and the machine or product but also the surrounding environment. DHM systems consider in most cases only physical user capabilities and with focus on consideration of body size related anthropometric diversity. However, the human-machine interaction is not only affected by the size and proportions of a user but for example also the user´s muscle strength and range of motion (ROM). This paper describes a study where diversity in strength and ROM, together with diversity in body size, is implemented in the process of creating data for a group of human arm models. A literature study was done to investigate the diversity of strength and ROM and the correlation between such measurements and body size data. The results from the literature study showed that there is little correlation between body size, strength and ROM. The study also showed that there are few published studies where body size, strength and ROM have been tested at the same time. From the literature study, generic correlation coefficients between body size, strength and ROM were synthesized. Using these correlation coefficients and Principal Component Analysis, data for a group of 14 female arm models with varying body size, strength and ROM were calculated. The results show that it is possible to introduce additional variables such as strength and ROM, but also that data of the correlation between body size and other types of anthropometric measurements are scarce. New measurement studies are important to decrease the uncertainties when predicting correlation coefficients between body size, strength and ROM variables.

  • 21.
    Brolin, Erik
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society. Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Hanson, Lars
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Örtengren, Roland
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Conditional Regression Model for Prediction of Anthropometric Variables2013In: 2013 Digital human modeling symposium / [ed] Matt Reed, 2013Conference paper (Refereed)
    Abstract [en]

    In digital human modelling (DHM) systems consideration of anthropometry is central. Important functionality in DHM tools is the regression model, i.e. the possibility to predict a complete set of measurements based on a number of defined independent anthropometric variables. The accuracy of a regression model is measured by how well the model predicts dependent variables based on independent variables, i.e. known key anthropometric measurements. In literature, existing regression models often use stature and/or body weight as independent variables in so-called flat regressions models which can produce estimations with large errors when there are low correlations between the independent and dependent variables. This paper suggests a conditional regression model that utilise all known measurements as independent variables when predicting each unknown dependent variable. The conditional regression model is compared to a flat regression model, using stature and weight as independent variables, and a hierarchical regression model that uses geometric and statistical relationships between body measurements to create specific linear regression equations in a hierarchical structure. The accuracy of the models is assessed by evaluating the coefficient of determination, R2 and the root-mean-square deviation (RMSD). The results from the study show that using a conditional regression model that makes use of all known variables to predict the values of unknown measurements is advantageous compared to the flat and hierarchical regression models. Both the conditional linear regression model and the hierarchical regression model have the advantage that when more measurements are included the models will give a better prediction of the unknown measurements compared to the flat regression model based on stature and weight. A conditional linear regression model has the additional advantage that any measurement can be used as independent variable. This gives the possibility to only include measurements that have a direct connection to the design dimensions being sought. Utilising the conditional regression model would create digital manikins with enhanced accuracy that would produce more realistic and accurate simulations and evaluations when using DHM tools for the design of products and workplaces.

  • 22.
    Brolin, Erik
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Hanson, Lars
    Industrial Development, Scania CV, Södertalje, Sweden / Chalmers University of Technology, Gothenburg, Sweden.
    Description of boundary case methodology for anthropometric diversity consideration2012In: International Journal of Human Factors Modelling and Simulation, ISSN 1742-5549, Vol. 3, no 2, p. 204-223Article in journal (Refereed)
    Abstract [en]

    This paper describes and evaluates the boundary case methodology for the simultaneous consideration of variance for a number of selected anthropometric variables. The methodology includes the calculation of key dimension values for extreme but likely anthropometric measurement combinations. This data can be applied when utilising digital human modelling (DHM) tools for proactive design work and entered as input data when representative manikins are defined. The mathematical procedure is clearly described and exemplified to demonstrate how to use the methodology in design work. The outcome of the method is illustrated and compared using several different cases where the number of measurements is varied and where principal component analysis (PCA) is used to reduce the number of dimensions in one case. The paper demonstrates that the proposed boundary case method is advantageous compared to approaches based on the use of univariate percentile data in design.

  • 23.
    Brolin, Erik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden.
    Design of a Digital Human Modelling Module for Consideration of Anthropometric Diversity2014In: Advances in Applied Digital Human Modeling / [ed] Vincent Duffy, AHFE Conference , 2014, p. 114-120Conference paper (Refereed)
  • 24.
    Brolin, Erik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden.
    Björkenstam, Staffan
    Fraunhofer-Chalmers Centre, Gothenburg, Sweden.
    Virtual test persons based on diverse anthropometric data for ergonomics simulations and analysis2017In: Proceedings of the 49th NES 2017 Conference "Joy at Work", Lund, August 20-23, 2017 / [ed] Anna-Lisa Osvalder, Mikael Blomé and Hajnalka Bodnar, Lund: Lund University, Faculty of Engineering , 2017, p. 232-239Conference paper (Refereed)
    Abstract [en]

    This paper describes a study where diverse anthropometric data is included in the process of generating data for a group of virtual test persons. Data on body size, strength and ROM were either collected on an individual level or predicted and synthesized and then used in cluster analyses to generate six unique virtual test persons. Results show that the method is able to generate detailed virtual test persons which enables more realistic and accurate simulations, as strength and ROM data is included into the motion prediction algorithms used to generate motions.

  • 25.
    Brolin, Erik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Industrial Development, Scania, Scania CV, Södertälje, Sweden / Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Örtengren, Roland
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Adaptive regression model for prediction of anthropometric data2017In: International Journal of Human Factors Modelling and Simulation, ISSN 1742-5549, Vol. 5, no 4, p. 285-305Article in journal (Refereed)
    Abstract [en]

    This paper presents and evaluates an adaptive linear regression model for the prediction of unknown anthropometric data based on a flexible set of known predictive data. The method is based on conditional regression and includes use of principal component analysis to reduce effects of multicollinearity between the predictive variables. Results from the study show that the proposed adaptive regression model produces more accurate predictions compared to a flat regression model based on stature and weight, and also compared to a hierarchical regression model, that uses geometric and statistical relationships between body measurements to create specific linear regression equations in a hierarchical structure. An additional evaluation shows that the accuracy of the adaptive regression model increases logarithmically with the sample size. Apart from the sample size, the accuracy of the regression model is affected by the number of, and on which measurements that are, variables in the predictive dataset.

  • 26.
    Brolin, Erik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Chalmers University of Technology, Gothenburg, Sweden.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Chalmers University of Technology, Gothenburg, Sweden / Industrial Development, Scania CV, Södertälje, Sweden.
    Örtengren, Roland
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Adaptive regression model for synthesizing anthropometric population data2017In: International Journal of Industrial Ergonomics, ISSN 0169-8141, E-ISSN 1872-8219, Vol. 59, p. 46-53Article in journal (Refereed)
    Abstract [en]

    This paper presents the development of an adaptive linear regression model for synthesizing of missing anthropometric population data based on a flexible set of known predictive data. The method is based on a conditional regression model and includes use of principal component analysis, to reduce effects of multicollinearity between selected predictive measurements, and incorporation of a stochastic component, using the partial correlation coefficients between predicted measurements. In addition, skewness of the distributions of the dependent variables is considered when incorporating the stochastic components. Results from the study show that the proposed regression models for synthesizing population data give valid results with small errors of the compared percentile values. However, higher accuracy was not achieved when the number of measurements used as independent variables was increased compared to using only stature and weight as independent variables. This indicates problems with multicollinearity that principal component regression were not able to overcome. Descriptive statistics such as mean and standard deviation values together with correlation coefficients is sufficient to perform the conditional regression procedure. However, to incorporate a stochastic component when using principal component regression requires raw data on an individual level.

    Relevance to industry

    When developing products, workplaces or systems, it is of great importance to consider the anthropometric diversity of the intended users. The proposed regression model offers a procedure that gives valid results, maintains the correlation between the measurements that are predicted and is adaptable regarding which, and number of, predictive measurements that are selected.

  • 27.
    Brolin, Erik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Industrial Development, Scania, Scania CV, Södertälje, Sweden / Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Örtengren, Roland
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Generation and evaluation of distributed cases by clustering of diverse anthropometric data2016In: International Journal of Human Factors Modelling and Simulation, ISSN 1742-5557, Vol. 5, no 3, p. 210-229Article in journal (Refereed)
    Abstract [en]

    This paper describes a study where diversity in body size, strength and joint range of motion, together with diversity in other capability measurements, is included in the process of generating data for a group of test cases using cluster analysis. Descriptive statistics and correlation data was acquired for 15 variables for different age groups and both sexes. Based on this data, a population of 10,000 individuals was synthesised using correlated random numbers. The synthesised data was used in cluster analyses where three different clustering algorithms were applied and evaluated; hierarchical clustering, k-means clustering and Gaussian mixture distribution clustering. Results from the study show that the three clustering algorithms produce groups of test cases with different characteristics, where the hierarchical and k-means algorithm give the most diverse results and where the Gaussian mixture distribution gives results that are in between the first two.

  • 28.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Swerea IVF AB, Stockholm.
    Bergman, Christian
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Moestam, Lena
    Volvo Trucks GTT, Gothenburg.
    Lean and its impact on workplace design2013In: Proceedings of NES 2013, 45th Nordic Ergonomics & Human Factors Society conference, Iceland, August 2013, 2013Conference paper (Refereed)
    Abstract [en]

    Lean analyses and following corrections of workstations are typically performed reactively, i.e. solving problems that already exist. However, there are benefits of enhanced proactivity related to the consideration of lean and human factors, as this would reduce the need for updating workstations. The approach presented here utilises a company specific, reactive lean evaluation methodology, but applied proactively, in the workstation design phase. Results gave that many assessment items in fact can be proactively addressed. This way, ergonomic and lean workstations that support quality, performance and wellbeing for a diversity of workers, can be built right the first time.

  • 29.
    Bäckstrand, Gunnar
    et al.
    Volvo Powertrain.
    Brolin, Anna
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Case, Keith
    Loughborough University.
    Supporting Attention in Manual Assembly and its Influence on Quality2010In: Proceedings of the 3rd Applied Human Factors and Ergonomics (AHFE) International Conference / [ed] Gavriel Salvendy, Waldemar Karwowski, Louisville: AHFE International , 2010Conference paper (Refereed)
    Abstract [en]

    Modern manufacturing information systems allow fast distribution of, and access to, information. One of the  main purposes with an information system within  manual assembly is to improve product quality, i.e. to ensure that assembly errors are as few as possible. Not only  must an information system contain the right information, it must  also  provide  it  at  the  right  time  and  in  the  right  place.  The  paper  highlights some of the concerns related to the design and use of information systems in manual assembly.  The  paper  describes  a  study  that  focuses  on  the  correlation  between active information seeking behaviour and assembly errors. The results are founded on  both  quantitative  and  qualitative  methods.  The  study  indicates  that  by  using simplified information carriers, with certain characteristics, the assembly personnel more easily could interpret the information, could to a higher degree be prompted (triggered) about product variants and could also be able to prepare physically and mentally   for   approaching   products   arriving   along   the   assembly   line.   These conditions  had  positive  influence  on  quality,  i.e.  gave  a  reduction  of  assembly errors.

  • 30.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society.
    De Vin, Leo
    University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society.
    Attention, Interpreting, Decision-Making and Acting in Manual Assembly2006In: IMC23, 2006, p. 165-172Conference paper (Other academic)
  • 31.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society.
    De Vin, Leo
    University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    Case, Keith
    Parameters Affecting Quality in Manual Assembly of Engines2005In: IMC 22: challenges facing manufacturing : proceedings of the 22nd International Manufacturing Conference, 31st August to 2nd September 2005 / [ed] John Vickery, Dublin: Institute of Technology Tallaght , 2005, p. 395-402Conference paper (Refereed)
  • 32.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Variants = Customer value?2010In: Standards News Magazine, no 2, p. 17-19Article in journal (Other (popular science, discussion, etc.))
  • 33.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    De Vin, Leo
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society.
    Piamonte, Paul
    Volvo Technology Corporation, Göteborg, Sweden.
    Ergonomics Analysis in a Virtual Environment2006In: Proceedings of the International Manufacturing Conference, IMC 23, 2006, p. 165-172Conference paper (Other academic)
  • 34.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK / Volvo Powertrain Sweden, Skövde, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    De Vin, Leo J.
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK.
    Piamonte, Paul
    Volvo Technology Corporation, Göteborg, Sweden.
    Ergonomics analysis in a virtual environment2007In: International Journal of Manufacturing Research, ISSN 1750-0591, Vol. 2, no 2, p. 198-208Article in journal (Refereed)
    Abstract [en]

    Simulation can support the design of an ergonomic workplace by enabling early assessment of ergonomic conditions in a virtual environment. An important feature is the possibility to study alternative solutions or the effect of improvements from an ergonomics perspective. To be able to conduct an efficient and reliable evaluation in a virtual environment, an objective analysis method is essential. Such an analysis method should be integrated in the simulation software, and support a company's everyday ergonomics work process. In order to gain from existing ergonomics knowledge within a company, the possibility to implement such wisdom in the current simulation software becomes important. This paper presents an implementation work done with the purpose of integrating an established ergonomics work process into a virtual environment. It describes the benefits of an ergonomics work process where simulation and evaluation at early stages of a design process are key factors. The paper will also describe the integration process, i.e., the technical issues as well as the change in work methods.

  • 35.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society.
    Lämkull, Dan
    Volvo Car Corporation, Manufacturing Engineering, Gothenburg, Sweden / Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    De Vin, Leo J.
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society.
    Reduction of ergonomics design flaws through virtual methods2007In: Proceedings of the 39th annual Nordic Ergonomic Society Conference, Lysekil, Sweden, October 1-3, 2007 (NES 2007) CD-ROM, Nordic Ergonomics Society, 2007Conference paper (Refereed)
    Abstract [en]

    A work method for product and production system development that includes virtual methods for ergonomics analysis is presented and argued.The proposed work method is described and illustrated with an example,which the authors believe shows how a virtual work method can contribute to a better workplace design, and thereby, if utilised, would have prevented some of the design flaws that existed in the actual final product design in the example. This paper will also present the outcome, gain, and setbacks that are connected to the use of virtual work analysis methods within a design process.

  • 36.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society.
    Möller, S.
    Volvo Information Technology AB, Skövde, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    De Vin, Leo
    University of Skövde, School of Technology and Society.
    Sundin, A.
    National Institute for Working Life - West, Gothenburg, Sweden.
    Case, Keith
    University of Skövde, School of Humanities and Informatics.
    A Roadmap Towards Cost Calculation Methods Connected to Ergonomics Analysis and Simulation2005In: Ergonomics as a tool in future development and value creation : proceedings: NES2005 in Oslo - Norway, Nordic Ergonomics Society 37th Annual Conference, 10-12 October 2005 / [ed] Bo Veiersted, Knut Inge Fostervold, Kristian S. Gould, Oslo: Nordic Ergonomics Society, 2005, p. 312-316Conference paper (Refereed)
  • 37.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society.
    Thorvald, Peter
    University of Skövde, School of Technology and Society.
    De Vin, Leo J.
    University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society.
    The impact of information presentation on work environment and product quality: A case study2008In: Ergonomics is a lifestyle = Vinnuvistfræði er lífstíll: NES 2008 : abstracts, Kópavogur: Vinnuvistfræðifélag Íslands , 2008Conference paper (Refereed)
  • 38.
    Case, Keith
    et al.
    University of Skövde, School of Technology and Society.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    Thorvald, Peter
    University of Skövde, School of Technology and Society.
    De Vin, Leo J.
    University of Skövde, School of Technology and Society.
    An assembly line information system study2008In: Advances in manufacturing technology - XXII: Proceedings of the 6th International Conference on Manufacturing Research (ICMR2008) / [ed] Kai Cheng, Harris Makatsoris & David Harrison, Uxbridge: Brunel University , 2008, p. 181-188Conference paper (Refereed)
  • 39.
    Case, Keith
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Marshall, Russell
    Loughborough University.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Summerskill, Steve
    Loughborough University.
    Gyi, Diane
    Loughborough University.
    Sims, Ruth
    Loughborough University.
    HADRIAN: Fitting Trials by Digital Human Modelling2009In: Digital Human Modeling: HCII 2009 / [ed] Duffy, V.G., Springer-Verlag Berlin Heidelberg , 2009, p. 673-680Conference paper (Refereed)
    Abstract [en]

    Anthropometric data are often described in terms of percentiles and too often digital human models are synthesised from such data using a single percentile value for all body dimensions. The poor correlation between body dimensions means that products may be evaluated against models of humans that do not exist. Alternative digital approaches try to minimise this difficulty using pre-defined families of manikins to represent human diversity, whereas in the real world carefully selected real people take part in 'fitting trials'. HADRIAN is a digital human modeling system which uses discrete data sets for individuals rather than statistical populations. A task description language is used to execute the evaluative capabilities of the underlying SAMMIE human modelling system as though a 'real' fitting trial was being conducted. The approach is described with a focus on the elderly and disabled and their potential exclusion from public transport systems.

  • 40.
    Delfs, Niclas
    et al.
    Fraunhofer-Chalmers Research Centre, Gothenburg, Sweden.
    Bohlin, Robert
    Fraunhofer-Chalmers Research Centre, Gothenburg, Sweden.
    Hanson, Lars
    Industrial Development, Scania CV, Södertälje, Sweden.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Carlson, Johan S.
    Fraunhofer-Chalmers Research Centre, Gothenburg, Sweden.
    Introducing Stability of Forces to the Automatic Creation of Digital Human Postures2013Conference paper (Refereed)
    Abstract [en]

    Although the degree of automation is increasing in manufacturing industries, many assembly operations are performed manually. To avoid injuries and to reach sustainable production of high quality, comfortable environments for the operators are vital. Poor station layouts, poor product designs or badly chosen assembly sequences are common sources leading to unfavorable poses and motions. To keep costs low, preventive actions should be taken early in a project, raising the need for feasibility and ergonomics studies in virtual environments long before physical prototypes are available. Today, in the automotive industries, such studies are conducted to some extent. The full potential, however, is far from reached due to limited software support in terms of capability for realistic pose prediction, motion generation and collision avoidance. As a consequence, ergonomics studies are time consuming and are mostly done for static poses, not for full assembly motions. Furthermore, these ergonomic studies, even though performed by a small group of highly specialized simulation engineers, show low reproducibility within the group.Effective simulation of manual assembly operations considering ergonomic load and clearance demands requires detailed modeling of human body kinematics and motions as well as a fast and robust inverse kinematics solver. In this paper we introduce a stability measure rewarding poses insensitive to variations in contact points and contact forces. Normally this has been neglected and only the balance of moment and forces has been taken into account. The manikin used in this work has 162 degrees of freedom and uses an exterior root. To describe operations and facilitate motion generation, the manikin is equipped with coordinate frames attached to end-effectors like hands and feet. The inverse kinematic problem is to find joint values such that the position and orientation of hands and feet matches certain target frames during an assembly motion. This inverse problem leads to an underdetermined system of equations since the number of joints exceeds the end-effectors’ constraints. Due to this redundancy there exist a set of solutions, allowing us to pick a solution that maximizes a scalar valued comfort function. Many objectives are included in the comfort function, for example in terms of joint angles, joint moments and solid objects’ distance to the manikin. The proposed stability measure complements the earlier balance criterion and is combined into the comfort function. By increasing the importance of this function the digital human model will reposition to a more stable pose. The digital human model will be tested on a set of challenging assembly operations taken from the automotive industry to show the effect of the stability measure.

  • 41.
    Falck, Ann-Christine
    et al.
    Chalmers University of Technology.
    Örtengren, Roland
    Chalmers University of Technology.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    The Impact of Poor Assembly Ergonomics on Product Quality: A Cost-Benefit Analysis in Car Manufacturing2010In: Human Factors and Ergonomics in Manufacturing, ISSN 1090-8471, E-ISSN 1520-6564, Vol. 20, no 1, p. 24-41Article in journal (Refereed)
    Abstract [en]

    The study aimed at analyzing the relationship between assembly ergonomics, assemblability (“ease of assembly”), and product quality and at quantifying these relationships in economic terms. This was in order to better to support the development of more ergonomic product and assembly solutions, particularly at early stages of the car development process. The assembly of 24,443 cars was studied for 8 weeks in an assembly plant and for another 16 weeks as factory-complete vehicles. The results show increased risks for quality errors of 3.0 and 3.7 times and total action costs that were 8.7 times and 8.2 times higher for high and medium physical load assemblies compared to low physical load assemblies for 55 tasks assessed.

  • 42.
    Falck, Annki
    et al.
    Chalmers University of Technology.
    Örtengren, Roland
    Chalmers University of Technology.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Early risk identification and cost-benefit analyses through ergonomics simulation2009Conference paper (Refereed)
    Abstract [en]

    For cost-beneficial reasons simulations with computer manikins have been increasingly used in the automotive industry for prediction of ergonomics problems before the product and work place exist in physical form. The main purpose of ergonomics simulations is to apply biomechanical models and data to assess the acceptability of the physical work load, e.g., working postures, visibility, clearance, etc., which could result in requirements to change the design of the product. The aim is to improve ergonomics conditions in manual assembly and to promote a better product quality through improved assemblability (ease of assembly). Many studies have shown a clear correlation between assembly ergonomics and product quality and that poor assembly ergonomics result in impaired product quality and in decreased productivity. Nevertheless, there are remaining difficulties in achieving acceptance for changes of product and production solutions because of poor assembly ergonomics.

    A recent study in the Swedish automotive industry showed that huge savings and increased profit margins can be obtained by eliminating ergonomics risk concepts in the very early product development process. The study confirmed a strong relation between poor ergonomics assembly solutions and quality errors of the product (car). There was a substantially increased risk for quality errors and increased costs for corrective measures of the product for assembly items of high and moderate physical work load compared to assembly items of low work load. The quality risk was increased 3 and 3.7 times, respectively. The overall cost for corrective measures in the assembly plant and for factory complete cars was 8.7 and 8.2 times higher for assembly items of high and medium physical work load compared to items of low physical work load.

    The purpose of this paper is to demonstrate the need for ergonomics simulations of potentially harmful assembly concepts in combination with cost-benefit analyses of conceivable system solutions based on calculation of costs for quality errors related to poor ergonomics and poor assemblability. The intended end result of this research is a model by application of which it is possible to calculate the cost for quality losses and health effects due to poor ergonomics and compare it with the cost for improving the ergonomics with designers, manufacturing engineers and ergonomists as main users.

  • 43.
    Falck, Annki
    et al.
    Department of Product and Production Development, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Örtengren, Roland
    Department of Product and Production Development, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    The influence of assembly ergonomics on product quality and productivity in car manufacturing – a cost-benefit approach2008In: Ergonomics is a lifestyle = Vinnuvistfræði er lífstíll: NES 2008 : abstracts, Kópavogur: Vinnuvistfræðifélag Íslands , 2008Conference paper (Refereed)
    Abstract [en]

        Car manufacturing is often associated with poor working environment resulting in musculoskeletal disorders and high sick leave among assembly workers. Besides, a number of studies have proven that there is a clear correlation between assembly ergonomics and product quality and that poor assembly ergonomics result in impaired product quality and in decreased productivity. Many proactive measures have been made trying to prevent these problems such as training production staff in load ergonomics, workstation improvements, work rotation and design changes in product and production development. Nevertheless, there are remaining difficulties in receiving acceptance for changes of product and production solutions that cause poor assembly ergonomics.      This project aims at analyzing the relation between assembly ergonomics, assemblability and product quality. The objective is to quantify ergonomics and assemblability in economic terms in order to better support the development of more ergonomic product and assembly solutions, particularly at early stages of the car development process. Overall, the purpose is to create a tool that supports decision making in the design of assembly concepts. The tool will have functionality to assess ergonomic conditions in terms of quality and productivity, interpreted in monetary terms.              A selection of assemblies of high, medium and low physical work load are followed and evaluated with respect to quality errors for eight weeks in production. The numbers of quality errors are registered and the costs for scrap and corrective quality actions are calculated. For each ergonomic risk level the purpose is to define an associated quality cost. 

  • 44.
    Hanson, L.
    et al.
    Industrial Development, Scania CV.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Bohlin, R
    Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park.
    Carlsson, J.S.
    Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park.
    IMMA - Intelligently Moving Manikins: Project Status 20112011In: Proceedings of the 1st International Symposium on Digital Human Modeling, Lyon, France, June, Université Claude Bernard Lyon , 2011Conference paper (Refereed)
    Abstract [en]

    The overall rationale and assumption for the research project presented in this paper is that a fast, easy to use, and reliable procedure to predict and validate manual assembly tasks is of major importance in product and production development processes to ensure high and robust product quality and process performance. A basic condition for the research is the belief that tools with such functionality are currently not available for companies to utilise in their development process. Hence more research and development is needed in the area. This paper describes the status of the project IMMA - Intelligently Moving Manikins and discusses coming initiatives. The project status is portrayed by a conceivable simulation task of a digital test assembly of a centre console.

  • 45.
    Hanson, Lars
    et al.
    Division of Ergonomics, Department of Design Sciences, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden / Saab Automobile AB, SE-461 80 Trollhättan, Sweden.
    Blomé, Mikael
    Division of Ergonomics, Department of Design Sciences, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden.
    Dukic, Tania
    National Institute for Working Life/West, P.O. Box 8850, SE-402 72 Gothenburg, Sweden / Division of Human Factors Engineering, Department of Product and Production Development, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    Guide and documentation system to support digital human modeling applications2006In: International Journal of Industrial Ergonomics, ISSN 0169-8141, E-ISSN 1872-8219, Vol. 36, no 1, p. 17-24Article in journal (Refereed)
    Abstract [en]

    Car developers use digital human modeling tools to analyze and visualize car interiors in relation to human characteristics before the vehicles are actually constructed. Developers, reviewers and users of human simulation tools often claim that such tools can reduce development time and costs. In car industry companies today, human simulation tools are used by a single or a few experts in an informal working process with insufficient documentation. To prepare for extensive, effective and efficient use of human simulation modeling tools in industry with several users within a company, the aim of this study was to design and evaluate a digital guide and documentation system to support digital human modeling applications. A participative design approach was used in developing the guide, involving human simulation tool users and managers within the General Motors Group. The system consists of two major parts: a usage guide and database. The usage guide is divided into three sections considering the professionals involved: (1) initiation of human–vehicle interaction analysis, (2) preparation and running of the digital human tool and (3) recommendation formulation and closure. The guide was connected to a database with search and print capabilities for previous and ongoing human simulation analyses. Sixteen subjects from industry and university settings evaluated the support system. Results showed that the users appreciated the guide and documentation system, in particular, the database for storing human simulation work. The guide was perceived as being especially useful for guidance in large analyses, whereas for smaller ones the subjects felt the formalized guide was too lengthy and time consuming. The use of the formalized guide is likely to reduce differences in results, within and between tool users. The support system guides the simulation tool user through an acknowledged process; it documents, stores and keeps track of ongoing and previous analyses, and facilitates the reuse of studies.

  • 46.
    Hanson, Lars
    et al.
    Lund University.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Use of Anthropometric Measures and Digital Human Modelling Tools for Product and Workplace Design2012In: Handbook of Anthropometry: Physical Measures of Human Form in Health and Disease / [ed] Victor R. Preedy, Springer Science+Business Media B.V., 2012, p. 3015-3034Chapter in book (Refereed)
    Abstract [en]

    This chapter addresses and demonstrates the application of digital human modelling (DHM) tools to consider anthropometric diversity in product and workplace design. A number of additional methods for evaluating ergonomics conditions are also illustrated. Three cases show how DHM tools can be applied in different design settings and for different design undertakings, focusing on user variation in anthropometry. A number of methods for user representation in the DHM tool are briefl y presented. Method selection depends on the design problem at hand, and the chapter exemplifies the use of different methods for different design tasks. Examples are the use of onedimensional percentile based statistics data, the use of predefined collections of manikins, and the creation of representative cases by using multidimensional statistics. The chapter takes a designer’s view of the uses of DHM tools for anthropometry-related issues and illustrates how the tools can be of value in the design process.

  • 47.
    Hanson, Lars
    et al.
    Chalmers University of Technology.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Bohlin, Robert
    Chalmers Science Park.
    Carlsson, Johan S.
    Chalmers Science Park.
    IMMA - Intelligently Moving Manikin - Project Status2010In: Proceedings of the 3rd Applied Human Factors and Ergonomics (AHFE) International Conference / [ed] Gavriel Salvendy, Waldemar Karwowski, Louisville: AHFE International , 2010Conference paper (Refereed)
    Abstract [en]

    The overall rationale and assumption for the research project presented in this paper is that a fast, easy to use, and reliable procedure to predict and validate manual assembly tasks is of major importance in product and production development processes to ensure high and robust product quality and process performance. A basic condition for the research is the belief that tools with such functionality are currently not available for companies to utilise in their development processes. Hence more research and development is needed in the area. This paper describes the basic concepts and initial steps taken in the recently commenced research project IMMA - Intelligently Moving Manikin.

  • 48.
    Hanson, Lars
    et al.
    Scania CV / Chalmers.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Carlson, Johan S
    Fraunhofer Chalmers Centre.
    Bohlin, Robert
    Fraunhofer Chalmers Centre.
    Brolin, Erik
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Chalmers.
    Delfs, Niclas
    Fraunhofer Chalmers Centre.
    Mårdberg, Peter
    Fraunhofer Chalmers Centre.
    Stefan, Gustafsson
    Fraunhofer Chalmers Centre.
    Keyvani, Ali
    Högskolan Väst / Chalmers.
    Rhen, Ida-Märta
    Fraunhofer Chalmers Centre / Chalmers.
    IMMA – Intelligently moving manikins in automotive applications2014Conference paper (Other academic)
  • 49.
    Hanson, Lars
    et al.
    Lund University.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Lundström, Daniel
    University of Skövde.
    Wårell, Maria
    ArjoHuntleigh R&D Center, Lund.
    Application of Human Modelling in Health Care Industry2009In: Digital Human Modeling: Second International Conference, ICDHM 2009 / [ed] Vincent G. Duffy, Springer Berlin/Heidelberg, 2009, p. 521-530Conference paper (Refereed)
    Abstract [en]

    Digital human modelling (DHM) is commonly utilised for vehicle and workplace design in the automotive industry. More rarely are the tools applied in the health care industry, albeit having similar objectives for cost-efficiency and user-centred design processes. The paper illustrates how a DHM tool is modified and utilised to evaluate a bathing system design from caretakers' and caregivers' ergonomics point of view. Anthropometry, joint range of motion, description and appearance of the manikin was customised to meet the requirements in a health care setting. Furthermore, a preferred bathing posture was defined. A suggested DHM working process scenario illustrates that DHM tools can be customised, applied and useful in health care product design. Except technical customisations of the DHM tool, the development of a working process and work organisation around the tool is proposed for an effective and efficient use of digital human modelling.

  • 50.
    Hanson, Lars
    et al.
    Industrial Development, Scania CV AB, Södertälje, Sweden / Wingquist Laboratory, Chalmers University of Technology, Göteborg, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Söderholm, M.
    Industrial Development, Scania CV AB, Södertälje, Sweden.
    Digital test assembly of truck parts with the IMMA-tool - an illustrative case2012In: Work: A journal of Prevention, Assesment and rehabilitation, ISSN 1051-9815, E-ISSN 1875-9270, Vol. 41, no Suppl 1, p. 2248-2252Article in journal (Refereed)
    Abstract [en]

    Several digital human modelling (DHM) tools have been developed for simulation and visualisation of human postures and motions. In 2010 the DHM tool IMMA (Intelligently Moving Manikins) was introduced as a DHM tool that uses advanced path planning techniques to generate collision free and biomechanically acceptable motions for digital human models (as well as parts) in complex assembly situations. The aim of the paper is to illustrate how the IPS/IMMA tool is used at Scania CV AB in a digital test assembly process, and to compare the tool with other DHM tools on the market. The illustrated case of using the IMMA tool, here combined with the path planner tool IPS, indicates that the tool is promising. The major strengths of the tool are its user friendly interface, the motion generation algorithms, the batch simulation of manikins and the ergonomics assessment methods that consider time.

123 1 - 50 of 103
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf