his.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ayani, Mikel
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ganebäck, Maria
    Projektengagemang Industri & Energi Sverige AB, El & Automation, Skövde, Sweden.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Digital Twin: Applying emulation for machine reconditioning2018In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 72, p. 243-248Article in journal (Refereed)
    Abstract [en]

    Old machine reconditioning projects extend the life length of machines with reduced investments, however they frequently involve complex challenges. Due to the lack of technical documentation and the fact that the machines are running in production, they can require a reverse engineering phase and extremely short commissioning times. Recently, emulation software has become a key tool to create Digital Twins and carry out virtual commissioning of new manufacturing systems, reducing the commissioning time and increasing its final quality. This paper presents an industrial application study in which an emulation model is used to support a reconditioning project and where the benefits gained in the working process are highlighted.

  • 2.
    Ayani, Mikel
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Birtic, Martin
    University of Skövde, School of Engineering Science.
    Optimizing Cycle Time and Energy Efficiency of a Robotic Cell Using an Emulation Model2018In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, 2018, University of Skövde, Sweden / [ed] Peter Thorvald, Keith Case, Amsterdam: IOS Press, 2018, Vol. 8, p. 411-416Conference paper (Refereed)
    Abstract [en]

    Industrial automated systems are mostly designed and pre-adjusted to always work at their maximum production rate. This leaves room for important energy consumption reductions considering the production rate variations of factories in reality. This article presents a multi-objective optimization application targeting cycle time and energy consumption of a robotic cell. A novel approach is presented where an existing emulation model of a fictitious robotic cell was extended with low-level electrical components modeled and encapsulated as FMUs. The model, commanded by PLC and Robot Control software, was subjected to a multi-objective optimization algorithm in order to find the Pareto front between energy consumption and production rate. The result of the optimization process allows selecting the most efficient energy consumption for the robotic cell in order to achieve the required cycle.

  • 3.
    Fernández, Igor Azkarate
    et al.
    Dept. of Electronics and Computing, Mondragon Unibertsitatea, Arrasate-Mondragón, Spain.
    Ayani Eguía, Mikel
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Echeverría, Luca Eciolaza
    Dept. of Electronics and Computing, Mondragon Unibertsitatea, Arrasate-Mondragón, Spain.
    Virtual commissioning of a robotic cell: An educational case study2019In: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, IEEE, 2019, p. 820-825Conference paper (Refereed)
    Abstract [en]

    The emergence of software tools for testing control programs and virtual commissioning (VC) in industrial automation projects makes it possible to shorten lead times and improve product quality, but it also brings to light the need for competent technicians in these technologies. The academic environment can support the education of future professionals by reproducing and solving industrial problems in the classroom. This article presents a use case in which students work on a project to develop and validate the control system of a robotic cell. The study compares the conventional way of working against the use of a digital twin and exposes the benefits of it. 

  • 4.
    Syberfeldt, Anna
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ayani, Mikel
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Holm, Magnus
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    A holistic solution for integrating a simulated twin of an automation system during the system’s entire life-cycle2018In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, 2018, University of Skövde, Sweden / [ed] Peter Thorvald, Keith Case, Amsterdam: IOS Press, 2018, p. 405-410Conference paper (Refereed)
    Abstract [en]

    This paper describes a project that attempts to develop a holistic solution for integrating a simulated twin of an automation system during the system’s entire life-cycle. With such holistic solution, virtual commission could be undertaken in all steps of the life-cycle which facilitates companies in realizing flexible and intelligent automation systems. Based on the simulated twin, the companies could easily and cost-efficiently evaluate modifications, make improvements, and train operators when changes in the production setup occurs due mass-customization or new products being introduced. This aids the companies in staying competitive on a global and rapidly changing market and meet the challenges coming with the forth industrial revolution, such as mass-customization and short product life-cycles.

  • 5.
    Syberfeldt, Anna
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ayani, Mikel
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Holm, Magnus
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    Royal Institute of Technology.
    Lindgren-Brewster, Rodney
    Volvo Cars Engine, Skövde, Sweden.
    Localizing Operators in the Smart Factory: A Review of Existing Techniques and systems2016In: Proceedings of 2016 International Symposium on Flexible Automation, IEEE Computer Society, 2016, p. 186-192Conference paper (Refereed)
    Abstract [en]

    The aim of this paper to give a comprehensive overview of existing techniques and state-of-the-art systems for indoor localization that could be adopted in smart factories of the future. We present different techniques for calculating the position of a moving object using signal transmission and signal measurement,and compare their advantages and disadvantages. The paper also includes a discussion of various localization systems available in the market and compares their most important features. It ends with a discussion of important issues to consider in future work in order to fully implement indoor, real-time localization of operators in the smart factory.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf