Högskolan i Skövde

his.sePublications
Change search
Refine search result
1 - 32 of 32
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brolin, Anna
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, England.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Swerea IVF AB, Mölndal, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, England.
    Inadequate presented information and its effect on the cognitive workload2011In: Manufacturing Sustainability: Proceedings of the 28th International Manufacturing Conference (IMC 28) / [ed] J. Geraghty, P. Young, 2011, p. 121-129Conference paper (Refereed)
  • 2.
    Brolin, Anna
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, United Kingdom.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Research and Development, Swerea IVF, Stockholm, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, United Kingdom.
    Use of kitting to ease assemblers' cognitive workload2011In: Proceedings of NES2011 September 18—21, 2011 Oulu, Finland / [ed] Juha Lindfors, Merja Savolainen, Seppo Väyrynen, University of Oulu , 2011, p. 77-82Conference paper (Refereed)
    Abstract [en]

    The higher level of product variation in the automotive industry leads to an increasing workload for the assembler that has to search, fetch and assemble all the variants. This puts high demands on the information that is given to the assembler to fulfil the assembly task. This paper describes the impact of information overload and sources, and their influence on the assembler. Through observations conducted in the Swedish automotive industry, the study has shown that the assembly personnel perceive the kit as structured information and that structured kits are able to present distinct information at a certain place to the assembler, which in turn reduces the searching, resulting in decreased cognitive workload.

  • 3.
    Brolin, Anna
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, United Kingdom.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Research and Development, Swerea IVF, Stockholm, Sweden.
    Thorvald, Peter
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, United Kingdom.
    Kitting as an information source in manual assembly2012In: Advances in Ergonomics in Manufacturing / [ed] Stefan Trzcieliński; Waldemar Karwowski, CRC Press, 2012, p. 346-353Chapter in book (Refereed)
    Abstract [en]

    In manual assembly, a strategy to meet the goal of efficient production is the increased use of kitting as a material supply principle. Even though kitting is already implemented in industry, there are still uncertainties regarding the effects of introducing kits, particularly from a human factors perspective.

    This paper presents initial steps in the development of a method to be used for the evaluation of kitting. This from an information source point of view and for studying effects related to productivity and quality. The methodology is projected to act as a foundation for how to carry out a subsequent comprehensive case study. The purpose of the case study is to explore how kitting affects the cognitive workload compared to the ordinary material rack combined with part numbers used in the current manufacturing industry. This is done by measuring productivity; time spent on assembling a product, and quality; number of assembly errors. One step in the methodology development process, which is described in this paper, was to conduct a pilot study, primarily to test the methodology related to the selection of measurement parameters, as well as for getting experiences from running the methodology with real test subjects.

  • 4.
    Brolin, Anna
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, UK.
    Case, Keith
    Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, UK.
    Thorvald, Peter
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Cognitive Aspects Affecting Human Performance in Manual Assembly2016In: Advances in Manufacturing Technology XXX / [ed] Yee Mey Goh, Keith Case, IOS Press, 2016, p. 231-236Conference paper (Refereed)
    Abstract [en]

    This paper concerns the handling of information in assembly work environments. Several studies involving both literature reviews, case studies andobservations were conducted to find factors that affect human performance in manual assembly. The main experiment with 36 subjects used a mixed method design with a quantitative study, including time and errors as dependant measures,a qualitative study, including workload ratings, and a questionnaire. The experiment involved the assembly of a pedal car and the components werepresented using structured kits, unstructured kits and material racks. Assembly information was presented as text & component numbers or photographs, and situations with and without component variation were considered. Among theresults it was found that assembly times and workload ratings were lower when using a kit, whereas using a material rack resulted in perceived decreased workflow and increased stress and frustration. Assembly times and workload ratings were lower when using photographs, whereas using text and numbers increased mental workload.

  • 5.
    Brolin, Anna
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    Loughborough University, United Kingdom.
    Thorvald, Peter
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Interaction Effects Affecting Human Performance in Manual Assembly2018In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, 2018, University of Skövde, Sweden / [ed] Peter Thorvald, Keith Case, Amsterdam, Netherlands: IOS Press, 2018, p. 265-270Conference paper (Refereed)
    Abstract [en]

    This paper presents an experimental study aimed at investigating interaction effects affecting personnel in manual assembly. The main experiment with 36 subjects used a mixed method design which included a quantitative study, including time and errors as dependent measures, and a qualitative study, including workload ratings and a questionnaire. The overall task in the experiment was to assemble components on a pedal car. The main factors involved were assembly information (text & component numbers or photographs), material presentation (using structured kits, unstructured kits and material racks) and component variation (situations with and without component variation). It was found that performance, measured in assembly time, was best when combining photographs with no component variants and when using an unstructured kit.

  • 6.
    Bäckstrand, Gunnar
    et al.
    Volvo Powertrain.
    Brolin, Anna
    University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    Case, Keith
    Loughborough University, United Kingdom.
    Supporting Attention in Manual Assembly and its Influence on Quality2010In: Proceedings of the 3rd Applied Human Factors and Ergonomics (AHFE) International Conference / [ed] Gavriel Salvendy; Waldemar Karwowski, Louisville: AHFE International , 2010Conference paper (Refereed)
    Abstract [en]

    Modern manufacturing information systems allow fast distribution of, and access to, information. One of the main purposes with an information system within manual assembly is to improve product quality, i.e. to ensure that assembly errors are as few as possible. Not only must an information system contain the right information, it must also provide it at the right time and in the right place. The paper highlights some of the concerns related to the design and use of information systems in manual assembly. The paper describes a study that focuses on the correlation between active information seeking behaviour and assembly errors. The results are founded on both quantitative and qualitative methods. The study indicates that by using simplified information carriers, with certain characteristics, the assembly personnel more easily could interpret the information, could to a higher degree be prompted (triggered) about product variants and could also be able to prepare physically and mentally for approaching products arriving along the assembly line. These conditions had positive influence on quality, i.e. gave a reduction of assembly errors.

  • 7.
    Bäckstrand, Gunnar
    et al.
    Volvo Powertrain AB, Skövde, Sweden.
    Brolin, Anna
    University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    Case, Keith
    Loughborough University, United Kingdom.
    Supporting Attention in Manual Assembly and its Influence on Quality2010In: Advances in Cognitive Ergonomics / [ed] Gavriel Salvendy; Waldemar Karwowski, Boca Raton: CRC Press, 2010, 1, p. 460-469Chapter in book (Refereed)
    Abstract [en]

    Modern manufacturing information systems allow fast distribution of, and access to, information. One of the main purposes with an information system within manual assembly is to improve product quality, i.e. to ensure that assembly errors are as few as possible. Not only must an information system contain the right information, it must also provide it at the right time and in the right place. The paper highlights some of the concerns related to the design and use of information systems in manual assembly. The paper describes a study that focuses on the correlation between active information seeking behaviour and assembly errors. The results are founded on both quantitative and qualitative methods. The study indicates that by using simplified information carriers, with certain characteristics, the assembly personnel more easily could interpret the information, could to a higher degree be prompted (triggered) about product variants and could also be able to prepare physically and mentally for approaching products arriving along the assembly line. These conditions had positive influence on quality, i.e. gave a reduction of assembly errors.

  • 8.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UK ; Volvo Powertrain AB, Skövde, Sweden.
    De Vin, Leo
    University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UK.
    Attention, Interpreting, Decision-Making and Acting in Manual Assembly2006In: Proceedings of the 23rd International Manufacturing Conference: IMC 23: Innovations in Manufacturing: 30th August - 1st September 2006 / [ed] Waqar Ahmed; Robin B. Clarke; D. Michael J. Harris; Margaret Morgan, University of Ulster , 2006, p. 165-172Conference paper (Refereed)
    Abstract [en]

    In a modern manufacturing environment, data and information are a vital part of the manufacturing process and in particular for supporting the value adding activities. Modern manufacturing information systems allow fast distribution of, and access to, data and information. However, the technical improvements of manufacturing information systems do not always create the benefits that were expected from them. This paper discusses this problem in the context of manual assembly tasks. Attention, interpretation and decision-making are important drivers for how well the assembly tasks are performed - the acting. In other words, the acting is governed by how and when the attention of the assembly operator is caught, how easily the information can be interpreted, and to what extent the information is useful for decision making. The aim with the work is to find and present why data and information provided on the shop floor often fails to prevent quality problems; not seldom this data and information actually causes the problems. This paper focuses on one of the core issues related to assembly data and information, namely “active attention” and how this is triggered. If active information seeking behaviour is not present on the assembly shop floor, then the probability for a quality problem increases.

  • 9.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK ; Volvo Powertrain Sweden, Skövde, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    De Vin, Leo
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, UK.
    Piamonte, Paul
    Volvo Technology Corporation, Göteborg, Sweden.
    Ergonomics Analysis in a Virtual Environment2006In: Proceedings of the 23rd International Manufacturing Conference: IMC 23: Innovations in Manufacturing: 30th August - 1st September 2006 / [ed] Waqar Ahmed; Robin B. Clarke; D. Michael J. Harris; Margaret Morgan, University of Ulster , 2006, p. 543-550Conference paper (Refereed)
    Abstract [en]

    Simulation can support the design of an ergonomic workplace by enabling early assessment of ergonomic conditions in a virtual environment. An important feature is the possibility to study alternative solutions or the effect of improvements from an ergonomics perspective. To be able to conduct an efficient and reliable evaluation in a virtual environment, an objective analysis method is essential. Such an analysis method should be integrated in the simulation software, and support a company’s everyday ergonomics work process. In order to gain from existing ergonomics knowledge within accompany, the possibility to implement such wisdom in the current simulation software becomes important.

    This paper presents an implementation work done with the purpose of integrating an established ergonomics work process into a virtual environment. It describes the benefits of an ergonomics work process where simulation and evaluation at early stages of a design process are key factors. The paper will also describe the integration process, i.e. the technical issues as well as the change in work methods.

  • 10.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK ; Volvo Powertrain Sweden, Skövde, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    De Vin, Leo J.
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK.
    Piamonte, Paul
    Volvo Technology Corporation, Göteborg, Sweden.
    Ergonomics analysis in a virtual environment2007In: International Journal of Manufacturing Research, ISSN 1750-0591, Vol. 2, no 2, p. 198-208Article in journal (Refereed)
    Abstract [en]

    Simulation can support the design of an ergonomic workplace by enabling early assessment of ergonomic conditions in a virtual environment. An important feature is the possibility to study alternative solutions or the effect of improvements from an ergonomics perspective. To be able to conduct an efficient and reliable evaluation in a virtual environment, an objective analysis method is essential. Such an analysis method should be integrated in the simulation software, and support a company's everyday ergonomics work process. In order to gain from existing ergonomics knowledge within a company, the possibility to implement such wisdom in the current simulation software becomes important. This paper presents an implementation work done with the purpose of integrating an established ergonomics work process into a virtual environment. It describes the benefits of an ergonomics work process where simulation and evaluation at early stages of a design process are key factors. The paper will also describe the integration process, i.e., the technical issues as well as the change in work methods.

  • 11.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, UK / Volvo Powertrain Sweden, Skövde, Sweden.
    Lämkull, Dan
    Volvo Car Corporation, Manufacturing Engineering, Gothenburg, Sweden / Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    De Vin, Leo J.
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, UK.
    Reduction of ergonomics design flaws through virtual methods2007In: Proceedings of the 39th annual Nordic Ergonomic Society Conference, Lysekil, Sweden, October 1-3, 2007 (NES 2007) CD-ROM / [ed] Cecilia Berlin, Lars-Ola Bligård, Nordic Ergonomics Society, 2007Conference paper (Refereed)
    Abstract [en]

    A work method for product and production system development that includes virtual methods for ergonomics analysis is presented and argued.The proposed work method is described and illustrated with an example,which the authors believe shows how a virtual work method can contribute to a better workplace design, and thereby, if utilised, would have prevented some of the design flaws that existed in the actual final product design in the example. This paper will also present the outcome, gain, and setbacks that are connected to the use of virtual work analysis methods within a design process.

  • 12.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society.
    Möller, S.
    Volvo Information Technology AB, Skövde, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    De Vin, Leo
    University of Skövde, School of Technology and Society.
    Sundin, A.
    National Institute for Working Life - West, Gothenburg, Sweden.
    Case, Keith
    University of Skövde, School of Humanities and Informatics.
    A Roadmap Towards Cost Calculation Methods Connected to Ergonomics Analysis and Simulation2005In: Ergonomics as a tool in future development and value creation : proceedings: NES2005 in Oslo - Norway, Nordic Ergonomics Society 37th Annual Conference, 10-12 October 2005 / [ed] Bo Veiersted, Knut Inge Fostervold, Kristian S. Gould, Oslo: Nordic Ergonomics Society, 2005, p. 312-316Conference paper (Refereed)
  • 13.
    Bäckstrand, Gunnar
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UK / Volvo Powertrain AB, Skövde, Sweden.
    Thorvald, Peter
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UK.
    De Vin, Leo J.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UK.
    The impact of information presentation on work environment and product quality: A case study2008In: Ergonomics is a Lifestyle = Vinnuvistfræði er lífstíll: Proceedings of the Fortieth Annual Conference of the Nordic Ergonomics Society, NES2008 / [ed] Berglind Helgadóttir, Kópavogur: Vinnuvistfræðifélag Íslands , 2008Conference paper (Refereed)
    Download full text (pdf)
    fulltext
  • 14.
    Case, Keith
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, UK.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, UK / Volvo Powertrain AB, Skövde, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Thorvald, Peter
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, UK.
    De Vin, Leo J.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    An assembly line information system study2008In: Advances in manufacturing technology - XXII: Proceedings of the 6th International Conference on Manufacturing Research (ICMR2008) / [ed] Kai Cheng, Harris Makatsoris, David Harrison, Uxbridge, London: Brunel University , 2008, p. 181-188Conference paper (Refereed)
  • 15.
    Case, Keith
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, UK.
    Marshall, Russell
    Department of Design and Technology, Loughborough University, UK.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Summerskill, Steve
    Department of Design and Technology, Loughborough University, UK.
    Gyi, Diane
    Department of Human Sciences, Loughborough University, UK.
    Sims, Ruth
    Department of Design and Technology, Loughborough University, UK.
    HADRIAN: Fitting Trials by Digital Human Modelling2009In: Digital Human Modeling: Second International Conference, ICDHM 2009 Held as Part of HCI International 2009 San Diego, CA, USA, July 19-24, 2009 Proceedings / [ed] Vincent G. Duffy, Springer Berlin/Heidelberg, 2009, p. 673-680Conference paper (Refereed)
    Abstract [en]

    Anthropometric data are often described in terms of percentiles and too often digital human models are synthesised from such data using a single percentile value for all body dimensions. The poor correlation between body dimensions means that products may be evaluated against models of humans that do not exist. Alternative digital approaches try to minimise this difficulty using pre-defined families of manikins to represent human diversity, whereas in the real world carefully selected real people take part in 'fitting trials'. HADRIAN is a digital human modeling system which uses discrete data sets for individuals rather than statistical populations. A task description language is used to execute the evaluative capabilities of the underlying SAMMIE human modelling system as though a 'real' fitting trial was being conducted. The approach is described with a focus on the elderly and disabled and their potential exclusion from public transport systems.

  • 16.
    Högberg, Dan
    et al.
    University of Skövde, School of Technology and Society.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University Loughborough, Leicestershire, UK ; Volvo Powertrain AB, Skövde, Sweden.
    Lämkull, Dan
    Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden ; Volvo Car Corporation, Manufacturing Engineering, Dept. 81121, Göteborg, Sweden.
    De Vin, Leo
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UK.
    Örtengren, Roland
    Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden.
    Hanson, Lars
    Department of Design Sciences, Lund University, Sweden.
    Berlin, Cecilia
    Department of Product and Production Development, Chalmers University of Technology, Göteborg, Sweden.
    Towards Dynamic Ergonomics Analysis of Work Sequences in Virtual Environments2007In: Proceedings of the 17th International Conference on Flexible Automation and Intelligent Manufacturing (2007 FAIM), Philadelphia, USA, June 2007, 2007, p. 581-588Conference paper (Refereed)
    Abstract [en]

    Computer aided visualization and simulation enables early assessment of important design parameters of future products and production systems. Typically, humans affect the system performance, and in order to achieve the expected system efficiency ergonomics needs to be considered in the design process in addition to the more technical or logistical matters. Hence, there is a call for ergonomics to be a natural part of the product and production system design process, also at virtual stages. This paper portrays and discusses two cases where company-specific ergonomics guidelines were implemented into digital human modeling systems for performing static work analyses. Albeit useful, the approach of evaluating static postures gives a reduced picture of the actual situation since the work usually involves a series of movements and tasks. A recently commenced research project aims to enhance knowledge on how to estimate accumulated ergonomic load over time. This knowledge is eventually to be implemented in DHM tools to support objective ergonomics analysis of complete work sequences in virtual environments.

  • 17.
    Högberg, Dan
    et al.
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society.
    Manikin Characters: User Characters in Human Computer Modelling2006In: Contemporary Ergonomics, Taylor & Francis, 2006, p. 499-503Chapter in book (Other academic)
  • 18.
    Högberg, Dan
    et al.
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire, United Kingdom.
    Predefined Manikins to Support Consideration of Anthropometric Diversity by Product Designers2007In: Digital Human Modeling: First International Conference on Digital Human Modeling, ICDHM 2007 Held as Part of HCI International 2007 Beijing, China, July 22-27, 2007 Proceedings / [ed] Vincent G. Duffy, Springer Berlin/Heidelberg, 2007, p. 110-119Conference paper (Refereed)
    Abstract [en]

    The paper discusses the complexity involved in considering targeted product users’ anthropometric variation in multivariate design problems, such as the design of workplaces or vehicle interiors. The authors argue for the advantages of offering designers a number of predefined digital human models to incorporate in the CAD product models. A study has been carried out in order to illustrate the use of predefined digital human models in vehicle interior design by using the Digital Human Modelling (DHM) tool RAMSIS. The paper takes a designer’s view of digital human modelling and illustrates how DHM can be of great value in the design process, but also considers what implications this has on the functionality and usability of DHM tools.

  • 19.
    Högberg, Dan
    et al.
    University of Skövde, Department of Engineering Science.
    Case, Keith
    Loughborough University.
    Supporting 'Design for All' in Automotive Ergonomics2002Conference paper (Refereed)
    Abstract [en]

    The automotive industry faces increasingly tough competition in a global market. One key for competitiveness is product differentiation, in order to attract clearly defined market segments. However, designing cars for specific customer groups incorporates the risk that a car appeals to only a small number of potential buyers. Another issue is that the actual customer group in many cases differs fromthe initially targeted customer group. The use of the ‘design for all’ (DfAll) concept may very well enlarge a car manufacturer’s market and improve the vehicles by making them suit larger populations. This paper discusses the aims of a research project that seeks to identify areas where both the main targeted customer group andothers can gain from a ‘design for all’ approach. Other objectives are to suggest working methods that enable ‘design for all’ in the automotive development process and the identification of computer tools, such as virtual manikins, that can support these objectives early in a virtual design process.

    Download full text (pdf)
    Hogberg_IOESC2002
  • 20.
    Högberg, Dan
    et al.
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society.
    The impact of manikin family configuration on accommodation2005In: Ergonomics as a tool in future development and value creation : proceedings: NES2005 in Oslo - Norway, Nordic Ergonomics Society 37th Annual Conference, 10-12 October 2005 / [ed] Bo Veiersted, Knut Inge Fostervold, Kristian S. Gould, Oslo: Nordic Ergonomics Society, 2005, p. 91-95Conference paper (Refereed)
  • 21.
    Högberg, Dan
    et al.
    University of Skövde, Department of Engineering Science.
    Case, Keith
    Loughborough University.
    De Vin, Leo J.
    University of Skövde, Department of Engineering Science.
    Overlapping Ergonomic Evaluation in the Automotive Design Process2002Conference paper (Refereed)
    Abstract [en]

    Ergonomic evaluation typically comes late in the automotive design process, often not performed until physical mock-ups are produced. This may lead to expensive and cumbersome iterations, or to reductions of the final product quality due to low priority of meeting set ergonomic requirements. Computer aided design (CAD) is intensively used for design in the automotive industry. Performance and usability of computers and software are improving at a rapid pace, which enables CAD to be employed even more intensively. This encourages a digital design process where expensive, inflexible and time consuming physical mock-ups are only built at the end of the design process. This incorporates the risk that ergonomic evaluation will be put back even further. A way to address this problem is to enable ergonomics to be evaluated in the digital design process - in a virtual product. However, in many cases, evaluation made in a physical prototype is unbeatable in establishing ergonomic conditions. This paper discusses possible advantages of moving ergonomic evaluation earlier in the automotive design process by implementing planned overlapping strategies. It also shows initial results from a project at a car company, which aims at improving ergonomics integration in the automotive design process, e.g. by looking at task overlapping. These strategies are believed to be applicable both for evaluations made in a virtual environment and evaluations performed in the real world.

    Download full text (pdf)
    Hogberg_IMC2002
  • 22.
    Högberg, Dan
    et al.
    University of Skövde, Department of Engineering Science. Mechanical and Manufacturing Engineering, Loughborough University, UK.
    Hanson, Lars
    Ergonomics and Usability Centre, Saab Automobile AB, Trollhättan, Sweden ; Division of Ergonomics, Dept of Design Sciences, Lund University, Sweden.
    Case, Keith
    University of Skövde, Department of Engineering Science. Mechanical and Manufacturing Engineering, Loughborough University, UK.
    Computer manikin family usage for human accomodation2003In: Mind and Body in a Technological World: The Proceedings of the Nordic Ergonomics Society Thirty-fifth Annual Conference / [ed] Gudbjörg L. Rafnsdottir; H. Gunnarsdóttir; Þ. Sveinsdóttir, 2003, p. 184-188Conference paper (Refereed)
    Abstract [en]

    Commonly percentiles are used to define users’ bodily dimensions. The percentile approach is however not suitable for multivariate problems such as the design of car cockpits, i.e. where a range of body segment dimensions affects the design. An alternative way is to use a set, afamily, of manikins for evaluation that better represents human variety. The aim of this study was to compare seat and steering wheel adjustment ranges obtained when using manikin families or a percentile approach as the user representation in human simulation software. Results obtained indicate that a more elaborate and careful consideration of users can be achieved when using a manikin family approach for human accommodation compared to apercentile approach.

  • 23.
    Högberg, Dan
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Hanson, LarsDepartment of Product and Production Development, Chalmers University of Technology.Case, KeithMechanical and Manufacturing Engineering, Loughborough University.
    International Journal of Human Factors Modelling and Simulation, Special issue on Application of Digital Human Modelling Tools in User Centred Design Processes2010Collection (editor) (Refereed)
  • 24.
    Högberg, Dan
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Hanson, Lars
    Department of Product and Production Development, Chalmers University of Technology, Gothenburg, Sweden.
    Case, Keith
    Mechanical and Manufacturing Engineering, Loughborough University, UK.
    Preface2010In: International Journal of Human Factors Modelling and Simulation, ISSN 1742-5549, Vol. 1, no 4, p. 353-355Article in journal (Refereed)
  • 25.
    Thorvald, Peter
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Brolin, Anna
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Case, Keith
    Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, United Kingdom.
    Using Mobile Information Sources to Increase Productivity and Quality2010In: Advances in Cognitive Ergonomics / [ed] Gavriel Salvendy; Waldemar Karwowski, Boca Raton: CRC Press, 2010, 1, p. 450-459Chapter in book (Refereed)
    Abstract [en]

    This paper presents an experimental study made on the use of different kinds of information sources in manual assembly. The general idea is that only the necessary information should be presented to the worker and it should be presented where and when the worker needs it as this is believed to both save time and unload cognitive strain. To account for the latter two aspects of this thought, where and when, this paper investigates the use of a handheld unit as an information source in manual assembly. Having a mobile information system, such as a Personal Digital Assistant (PDA), that can be carried with you at all times, as opposed to a stationary one, such as a computer terminal, is hypothesized to greatly improve productivity and quality. Experimental results show that the use of a PDA significantly improves quality whereas productivity does not significantly improve.

  • 26.
    Thorvald, Peter
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Brolin, Anna
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Högberg, Dan
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Case, Keith
    Mechanical and Manufacturing Engineering, Loughborough University.
    Using Mobile Information Sources to Increase Productivity and Quality2010In: Proceedings of the 3rd Applied Human Factors and Ergonomics (AHFE) International Conference / [ed] Gavriel Salvendy; Waldemar Karwowski, Louisville: AHFE International , 2010Conference paper (Refereed)
    Abstract [en]

    This paper presents an experimental study made on the use of different kinds of information sources in manual assembly. The general idea is that only the necessary information should be presented to the worker and it should be presented where and when the worker needs it as this is believed to both save time and unload cognitive strain. To account for the latter two aspects of this thought, where and when, this paper investigates the use of a handheld unit as an information source in manual assembly. Having a mobile information system, such as a Personal Digital Assistant (PDA), that can be carried with you at all times, as opposed to a stationary one, such as a computer terminal, is hypothesized to greatly improve productivity and quality. Experimental results show that the use of a PDA significantly improves quality whereas productivity does not significantly improve.

  • 27.
    Thorvald, Peter
    et al.
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, United Kingdom.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society. Research & Development, Volvo Powertrain, Skövde, Sweden / Mechanical and Manufacturing Engineering, Loughborough University, United Kingdom.
    Högberg, Dan
    University of Skövde, School of Technology and Society.
    de Vin, Leo
    University of Skövde, School of Technology and Society.
    Case, Keith
    University of Skövde, School of Technology and Society. Mechanical and Manufacturing Engineering, Loughborough University, United Kingdom.
    Demands on technology from a human automatism perspective in manual assembly2008In: Proceedings of the 18th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM2008, Skövde, Sweden, June 30 - July 2 / [ed] Leo J. de Vin, Amos H. C. Ng, Peter Thorvald, William G. Sullivan, Munir Ahmad, Skövde: University of Skövde , 2008, Vol. 1, p. 632-638Conference paper (Refereed)
  • 28.
    Thorvald, Peter
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UK.
    Bäckstrand, Gunnar
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UK / 3. Research & Development, Volvo Powertrain AB, Skövde, Sweden.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    de Vin, Leo
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, Leicestershire, UK.
    Information Presentation in Manual Assembly – A Cognitive Ergonomics Analysis2008In: Ergonomics is a lifestyle = Vinnuvistfræði er lífstíll: Proceedings of the Fortieth Annual Conference of the Nordic Ergonomics Society, NES2008 / [ed] Berglind Helgadóttir, Kópavogur: Vinnuvistfræðifélag Íslands , 2008Conference paper (Refereed)
    Abstract [en]

    In current practice, information is often presented to the operators under the false belief that more information leads to better quality. However, one must consider the cognitive capacity limitations of the human operator and design information systems based on these constraints. Important questions include what medium to use; audio, visual, paper based or computer screen systems? Also the syntax in terms of symbols and text, together with information content and the formatting of the system are important factors that will require much focus to result in a good information system. The paper describes a case where paper-based assembly instructions of a major automotive company have been studied, focusing on information design and cognitive ergonomics in information seeking behaviour. Within the case study, the paper-based information system has been evaluated with two focuses: automatic information behaviour (automatism) and consistency of information presentation in the operator graphical user interface (GUI). It is suggested that systems that do not offer clear and easy-to-find entry points to information will eventually cause quality issues in production.

  • 29.
    Thorvald, Peter
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Case, KeithUniversity of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Loughborough University.
    Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, Incorporating the 33rd National Conference on Manufacturing Research, September 11-13, 2018, University of Skövde, Sweden2018Conference proceedings (editor) (Refereed)
  • 30.
    Thorvald, Peter
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Technology, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
    Applying cognitive science to digital human modelling for user centred design2012In: International Journal of Human Factors Modelling and Simulation, ISSN 1742-5549, Vol. 3, no 1, p. 90-106Article in journal (Refereed)
    Abstract [en]

    To build software which, at the press of a button, can tell you what cognition-related hazards there are within an environment or a task, is probably well into the future if it is possible at all. However, incorporating existing tools such as task analysis tools, interface design guidelines and information about general cognitive limitations in humans, could allow for greater evaluative options for cognitive ergonomics. The paper discusses previous approaches to the subject and suggests adding design and evaluative guiding in digital human modelling that will help a user with little or no knowledge of cognitive science to design and evaluate a human-product interaction scenario.

  • 31.
    Thorvald, Peter
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Loughborough University, United Kingdom.
    Högberg, Dan
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre. Loughborough University, United Kingdom.
    Incorporating Cognitive Aspects in Digital Human Modeling2009In: Digital Human Modeling: Second International Conference, ICDHM 2009, Held as Part of HCI International 2009, San Diego, CA, USA, July 19-24, 2009. Proceedings / [ed] Vincent G. Duffy, Berlin Heidelberg: Springer Berlin/Heidelberg, 2009, p. 323-332Conference paper (Refereed)
    Abstract [en]

    To build software which, at the press of a button, can tell you what cognition related hazards there are within an environment or a task, is probably well into the future if it is possible at all. However, incorporating existing tools such as task analysis tools, interface design guidelines and information about general cognitive limitations in humans, could allow for greater evaluative options for cognitive ergonomics. The paper will discuss previous approaches on the subject and suggest adding design and evaluative guiding in DHM that will help a user with little to no knowledge of cognitive science, design and evaluate a human-product interaction scenario.

  • 32.
    Thorvald, Peter
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Högberg, Dan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Case, Keith
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom.
    The effect of information mobility on production quality2014In: International journal of computer integrated manufacturing (Print), ISSN 0951-192X, E-ISSN 1362-3052, Vol. 27, no 2, p. 120-128Article in journal (Refereed)
    Abstract [en]

    This article investigates the use of a hand-held unit as an information source in manual assembly. Having a mobile information system, such as a Personal Digital Assistant (PDA), that can be brought at all times, as opposed to a stationary one, such as a computer terminal, is hypothesised to increase the information range and thus improves assembly performance. The increased information range is argued to be due to assembly workers employing a cost-benefit strategy, where the cost of gathering information is compared with the assumed benefit of it. This article reports empirical data comparing the use of a mobile information carrier with a traditional stationary computer, and results show that the use of a PDA significantly improves quality, whereas productivity does not significantly improve quality. © 2013 Copyright Taylor & Francis.

1 - 32 of 32
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf