his.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Werner, Elin
    University of Skövde, School of Engineering Science.
    Materialanalys & optimering av hydrauliska högtryckskopplingar med hjälp av simuleringar2018Independent thesis Basic level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Optimizing the burst pressure with finite element analysis is done on the FEM ½” coupling at Parker Hannifin AB. The critical components which is the ball cage, guide and plug housing are in focus. A more accurate material analysis is done to make a more real-based data of the material in the coupling.  

    After being in contact with the company that performs the hardening of the component, the entire plug housing is assumed to be hardened. For more information about material data, static pressure test is performed on a coupling. The measured strains from the tests are compared to the strains in the simulations. The tensile strength and hardness coefficient on the guide and ball cage can be adjusted slightly from the tests, but the result has several uncertainties. 

    The number of balls can be reduced, numbers of balls between 15 and 12 are investigated at request from the company. Analysis of how hardening of the material for the guide is done and hardening of the surface for the plug housing. 

    The smallest deformation occurs when hardening the guide. The ball cage clearly demonstrated minor deformations and stresses as the number of balls is reduced from 15 to 12 balls in the coupling. To reduce the burst pressure on the plug housing, it is recommended to harden the surface with a 27 % harder surface than the current. Due to estimated values of material data on hardened surface, more information is needed to determine the thickness needed on the surface of the hardening when having 12 balls in the coupling. 

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf