Högskolan i Skövde

his.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Lång, Ivar
    University of Skövde, School of Humanities and Informatics.
    Utvärdering av Artificiella Neurala Arkitekturer För Navigering2011Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [sv]

    Den klassiska approachen till navigering innefattar att agenten håller en intern representativ modell av omgivningen. Denna approach har emellertid många nackdelar, speciellt för dynamiska miljöer. En modernare approach är att förlita sig på den faktiska omgivningen istället för en modell av denna. Detta arbete presenterar en undersökning av navigeringsproblemet och hur väl det löses av agenter vars kontrollmekanismer utgörs artificiella neurala nätverk. Tillförlitligheten hos de två neurala arkitekturerna Extended sequential cascaded network och Self-organized recurrent network bestäms genom experiment. Det visas i experimenten att Extended sequential cascaded network är den mest tillförlitliga arkitekturen av de två när navigeringsproblemet skall angripas. Det visas även att Extended sequential cascaded network tränar fram ett helt reaktivt beteende i samtliga experiment. Slutsatsen som kan dras av detta är att svåra problem inte alltid kräver avancerade arkitekturer för att lösastillfredsställande.

    Download full text (pdf)
    fulltext
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf