his.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abdul-Hussein, Saba
    et al.
    Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
    van der Ven, Peter F. M.
    Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany.
    Tajsharghi, Homa
    Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden / Department of Clinical and Medical Genetics, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Expression profiles of muscle disease-associated genes and their isoforms during differentiation of cultured human skeletal muscle cells2012In: BMC Musculoskeletal Disorders, ISSN 1471-2474, E-ISSN 1471-2474, Vol. 13, article id 262Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The formation of contractile myofibrils requires the stepwise onset of expression of muscle specific proteins. It is likely that elucidation of the expression patterns of muscle-specific sarcomeric proteins is important to understand muscle disorders originating from defects in contractile sarcomeric proteins.

    METHODS: We investigated the expression profile of a panel of sarcomeric components with a focus on proteins associated with a group of congenital disorders. The analyses were performed in cultured human skeletal muscle cells during myoblast proliferation and myotube development.

    RESULTS: Our culture technique resulted in the development of striated myotubes and the expression of adult isoforms of the sarcomeric proteins, such as fast TnI, fast TnT, adult fast and slow MyHC isoforms and predominantly skeletal muscle rather than cardiac actin. Many proteins involved in muscle diseases, such as beta tropomyosin, slow TnI, slow MyBPC and cardiac TnI were readily detected in the initial stages of muscle cell differentiation, suggesting the possibility of an early role for these proteins as constituent of the developing contractile apparatus during myofibrillogenesis. This suggests that in disease conditions the mechanisms of pathogenesis for each of the mutated sarcomeric proteins might be reflected by altered expression patterns, and disturbed assembly of cytoskeletal, myofibrillar structures and muscle development.

    CONCLUSIONS: In conclusion, we here confirm that cell cultures of human skeletal muscle are an appropriate tool to study developmental stages of myofibrillogenesis. The expression of several disease-associated proteins indicates that they might be a useful model system for studying the pathogenesis of muscle diseases caused by defects in specific sarcomeric constituents.

  • 2.
    Kariminejad, Ariana
    et al.
    Najmabadi Pathology & Genetics Center, Tehran, Iran.
    Ghaderi-Sohi, Siavash
    Najmabadi Pathology & Genetics Center, Tehran, Iran.
    Hossein-Nejad Nedai, Hamid
    Department of Pathology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
    Varasteh, Vahid
    Division of Thoracic Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
    Moslemi, Ali-Reza
    Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
    Tajsharghi, Homa
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden / Department of Clinical and Medical Genetics, University of Gothenburg, Gothenburg, Sweden.
    Lethal multiple pterygium syndrome, the extreme end of the RYR1 spectrum2016In: BMC Musculoskeletal Disorders, ISSN 1471-2474, E-ISSN 1471-2474, Vol. 17, no 1, p. 1-5, article id 109Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Lethal multiple pterygium syndrome (LMPS, OMIM 253290), is a fatal disorder associated with anomalies of the skin, muscles and skeleton. It is characterised by prenatal growth failure with pterygium present in multiple areas and akinesia, leading to muscle weakness and severe arthrogryposis. Foetal hydrops with cystic hygroma develops in affected foetuses with LMPS. This study aimed to uncover the aetiology of LMPS in a family with two affected foetuses.

    METHODS AND RESULTS: Whole exome sequencing studies have identified novel compound heterozygous mutations in RYR1 in two affected foetuses with pterygium, severe arthrogryposis and foetal hydrops with cystic hygroma, characteristic features compatible with LMPS. The result was confirmed by Sanger sequencing and restriction fragment length polymorphism analysis.

    CONCLUSIONS: RYR1 encodes the skeletal muscle isoform ryanodine receptor 1, an intracellular calcium channel with a central role in muscle contraction. Mutations in RYR1 have been associated with congenital myopathies, which form a continuous spectrum of pathological features including a severe variant with onset in utero with fetal akinesia and arthrogryposis. Here, the results indicate that LMPS can be considered as the extreme end of the RYR1-related neonatal myopathy spectrum. This further supports the concept that LMPS is a severe disorder associated with defects in the process known as excitation-contraction coupling.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf