his.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Fagerlind, Magnus G.
    et al.
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Webb, Jeremy S.
    Univ Southampton, Sch Biol Sci, Southampton SO16 7PX, Hants, England .
    Barraud, Nicolas
    Univ New S Wales, Ctr Marine Bioinnovat, Sydney, NSW 2052, Australia / Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia .
    McDougald, Diane
    Univ New S Wales, Ctr Marine Bioinnovat, Sydney, NSW 2052, Australia / Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia / Nanyang Technol Univ, Adv Environm Biotechnol Ctr, Singapore 639798, Singapore .
    Jansson, Andreas
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Nilsson, Patric
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Harlen, Mikael
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Kjelleberg, Staffan
    Univ New S Wales, Ctr Marine Bioinnovat, Sydney, NSW 2052, Australia / Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia / Nanyang Technol Univ, Singapore Ctr Environm Life Sci Engn, Singapore 639798, Singapore .
    Rice, Scott A.
    Univ New S Wales, Ctr Marine Bioinnovat, Sydney, NSW 2052, Australia / Univ New S Wales, Sch Biotechnol & Biomol Sci, Sydney, NSW 2052, Australia / Nanyang Technol Univ, Singapore Ctr Environm Life Sci Engn, Singapore 639798, Singapore .
    Dynamic modelling of cell death during biofilm development2012In: Journal of Theoretical Biology, ISSN 0022-5193, E-ISSN 1095-8541, Vol. 295, p. 23-36Article in journal (Refereed)
    Abstract [en]

    Biofilms are currently recognised as the predominant bacterial life-style and it has been suggested that biofilm development is influenced by a number of different processes such as adhesion, detachment, mass transport, quorum sensing, cell death and active dispersal. One of the least understood processes and its effects on biofilm development is cell death. However, experimental studies suggest that bacterial death is an important process during biofilm development and many studies show a relationship between cell death and dispersal in microbial biofilms. We present a model of the process of cell death during biofilm development, with a particular focus on the spatial localisation of cell death or cell damage. Three rules governing cell death or cell damage were evaluated which compared the effects of starvation, damage accumulation, and viability during biofilm development and were also used to design laboratory based experiments to test the model. Results from model simulations show that actively growing biofilms develop steep nutrient gradients within the interior of the biofilm that affect neighbouring microcolonies resulting in cell death and detachment. Two of the rules indicated that high substrate concentrations lead to accelerated cell death, in contrast to the third rule, based on the accumulation of damage, which predicted earlier cell death for biofilms grown with low substrate concentrations. Comparison of the modelling results with experimental results suggests that cell death is favoured under low nutrient conditions and that the accumulation of damage may be the main cause of cell death during biofilm development. (C) 2011 Elsevier Ltd. All rights reserved.

  • 2.
    Jonsson, Tomas
    et al.
    Department of Biology, Linköping University, Linköping, Sweden.
    Ebenman, Bo
    Department of Biology, Linköping University, Linköping, Sweden.
    Effects of predator-prey body size ratios on the stability of food chains1998In: Journal of Theoretical Biology, ISSN 0022-5193, E-ISSN 1095-8541, Vol. 193, no 3, p. 407-417Article in journal (Refereed)
  • 3.
    Karlsson, Patrik
    et al.
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Jonsson, Tomas
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Jonsson, Annie
    University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre.
    Food web structure and interaction strength pave the way for vulnerability to extinction2007In: Journal of Theoretical Biology, ISSN 0022-5193, E-ISSN 1095-8541, Vol. 249, no 1, p. 77-92Article in journal (Refereed)
    Abstract [en]

    This paper focuses on how food web structure and interactions among species affects the vulnerability, due to environmental variability, to extinction of species at different positions in model food webs. Vulnerability is here not measured by a traditional extinction threshold but is instead inspired by the IUCN criteria for endangered species: an observed rapid decline in population abundance. Using model webs influenced by stochasticity with zero autocorrelation, we investigate the ecological determinants of species vulnerability, i.e. the trophic interactions between species and food web structure and how these interact with the risk of sudden drops in abundance of species. We find that (i) producers fulfil the criterion of vulnerable species more frequently than other species, (ii) food web structure is related to vulnerability, and (iii) the vulnerability of species is greater when involved in a strong trophic interaction than when not. We note that our result on the relationship between extinction risk and trophic position of species contradict previous suggestions and argue that the main reason for the discrepancy probably is due to the fact that we study the vulnerability to environmental stochasticity and not extinction risk due to overexploitation, habitat destruction or interactions with introduced species. Thus, we suggest that the vulnerability of species to environmental stochasticity may be differently related to trophic position than the vulnerability of species to other factors.

    Earlier research on species extinctions has looked for intrinsic traits of species that correlate with increased vulnerability to extinction. However, to fully understand the extinction process we must also consider that species interactions may affect vulnerability and that not all extinctions are the result of long, gradual reductions in species abundances. Under environmental stochasticity (which importance frequently is assumed to increase as a result of climate change) and direct and indirect interactions with other species some extinctions may occur rapidly and apparently unexpectedly. To identify the first declines of population abundances that may escalate and lead to extinctions as early as possible, we need to recognize which species are at greatest risk of entering such dangerous routes and under what circumstances. This new perspective may contribute to our understanding of the processes leading to extinction of populations and eventually species. This is especially urgent in the light of the current biodiversity crisis where a large fraction of the world's biodiversity is threatened.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf