Estrogens play an important role in breast cancer etiology and the ACI rat provides a novel animal model for defining the mechanisms through which estrogens contribute to mammary cancer development. In crossing experiments between the susceptible ACI strain and two resistant strains, COP (Copenhagen) and BN (Brown Norway), several quantitative trait loci (QTL) that affect development of 17b-estradiol (E2)-induced mammary tumors have been defined. Using comparative genomic hybridization (CGH), we have analyzed cytogenetic aberrations in E2-induced mammary cancers and have found clear patterns of nonrandom chromosomal involvement. Approximately two thirds of the tumors exhibited copy number changes. Losses of rat chromosome 5 (RNO5) and RNO20 were particularly common, and it was found that these two aberrations often occurred together. A third recurrent aberration involving proximal gain and distal loss in RNO6 probably defined a distinct subgroup of tumors, since it never occurred in combination with RNO5 loss. Interestingly, QTL with powerful effects on mammary cancer development have been mapped to RNO5 and RNO6. These findings suggest that there were at least two genetic pathways to tumor formation in this rat model of E2-induced mammary cancer. By performing CGH on mammary tumors from ACI rats, F1 rats from crosses between the ACI and COP or BN strains and ACI.BN-Emca8 congenic rats, which carry the BN allele of the Emca8 QTL on RNO5 on the ACI genetic background, we were able to determine that the constitution of the germ line influences the pattern of chromosomal aberrations.
The inbred BDII rat is a valuable experimental model for the genetic analysis of endometrial adenocarcinoma (EAC). One common aberration detected by comparative genomic hybridization in rat EAC was gain/amplification affecting the proximal part of rat chromosome 6 (RNO6). We applied rat and mouse chromosome painting probes onto tumor cell metaphase preparations in order to detect and characterize gross RNO6 aberrations. In addition, the RNO6q11-q16 segment was analyzed by fluorescence in situ hybridization with probes representing 12 cancer-related genes in the region. The analysis revealed that seven tumors contained large RNO6-derived homogeneously staining regions (HSRs) in addition to several normal or near-normal RNO6 chromosomes. Five tumors (two of which also had HSRs) exhibited a selective increase of the RNO6q11-q16 segment, sometimes in conjunction with moderate amplification of one or a few genes. Most commonly, the amplification affected the region centered around band 6q16 and included the Mycn, Ddx1, and Rrm2 genes. A second region, centering around Slc8a1 and Xdh, also was affected by gene amplification but to a lesser extent. The aberrations in the proximal part of RNO6 were further analyzed using allelotyping of microsatellite markers in all tumors from animals that were heterozygous in the proximal RNO6 region. We could detect allelic imbalance (AI) in 12 of 20 informative tumors, 6 of which were in addition to those already analyzed by molecular cytogenetic methods as described. Our findings suggest that increase/amplification of genes in this chromosome region contribute to the development of this hormone-dependent tumor.
Mucoepidermoid carcinomas (MECs) of the salivary and bronchial glands are characterized by a recurrent t(11;19)(q21;p13) translocation resulting in a MECT1–MAML2 fusion in which the CREB-binding domain of the CREB coactivator MECT1 (also known as CRTC1, TORC1 or WAMTP1) is fused to the transactivation domain of the Notch coactivator MAML2. To gain further insights into the molecular pathogenesis of MECs, we cytogenetically and molecularly characterized a series of 29 MECs. A t(11;19) and/or an MECT1–MAML2 fusion was detected in more than 55% of the tumors. Several cases with cryptic rearrangements that resulted in gene fusions were detected. In fusion-negative MECs, the most common aberration was a single or multiple trisomies. Western blot and immunohistochemical studies demonstrated that the MECT1–MAML2 fusion protein was expressed in all MEC-specific cell types. In addition, cotransfection experiments showed that the fusion protein colocalized with CREB in homogeneously distributed nuclear granules. Analyses of potential downstream targets of the fusion revealed differential expression of the cAMP/CREB (FLT1 and NR4A2) and Notch (HES1 and HES5) target genes in fusion-positive and fusion-negative MECs. Moreover, clinical follow-up studies revealed that fusion-positive patients had a significantly lower risk of local recurrence, metastases, or tumor-related death compared to fusion-negative patients (P = 0.0012). When considering tumor-related deaths only, the estimated median survival for fusion-positive patients was greater than 10 years compared to 1.6 years for fusion-negative patients. These findings suggest that molecularly classifying MECs on the basis of an MECT1–MAML2 fusion is histopathologically and clinically relevant and that the fusion is a useful marker in predicting the biological behavior of MECs. © 2006 Wiley-Liss, Inc.
Endometrial cancer is a disease with serious impact on the human population, but not much is known about genetic factors involved in this complex disease. Female BDII rats are genetically predisposed to spontaneous endometrial carcinoma, and the BDII inbred strain provides an experimental animal model for endometrial carcinoma development. In the present study, BDII females were crossed with males from two nonsusceptible inbred rat strains. Endometrial adenocarcinomas (EACs) developed in a proportion of the F1 and F2 progeny. We screened 18 EAC solid tumors and 9 EAC cell cultures for loss of heterozygosity (LOH) using fluorescent-PCR-based marker allelotyping methodology with 47 microsatellite markers covering the proximal part of rat chromosome 10 (RNO10). Conclusive evidence was obtained for LOH/deletion involving about 56 cM in the proximal part of RNO10 in DNA from six out of seven informative tumor cell cultures. Analysis of the solid tumors confirmed the presence of LOH in this part of RNO10 in 14 of 17 informative tumors. However, from the studies in the solid tumors it appeared that in fact three separate segments in the proximal part of RNO10 were affected. These three LOH/deletion regions were located approximately in cytogenetic bands 10q11-12, 10q22, and 10q24. © 2001 Wiley-Liss, Inc.
Recent studies have shown that the t(11;19)(q21;p13) translocation in mucoepidermoid carcinomas and benign Warthin's tumors results in a fusion of the N-terminal CREB-binding domain of the cAMP coactivator TORC1 (a.k.a. MECT1 and WAMTP1) to the Notch coactivator MAML2. Here we show that a third tumor type, clear cell hidradenoma of the skin, also expresses this gene fusion. RT-PCR analysis of a clear cell hidradenoma with a t(11;19)(q21;p13) translocation revealed expression of a TORC1–MAML2 fusion transcript consisting of exon 1 of TORC1 fused to exons 2–5 of MAML2. Because the fusion was only detected in a single case, the frequency of this aberration in clear cell hidradenomas remains unknown. These results demonstrate that the t(11;19) in mucoepidermoid carcinoma, Warthin's tumor, and clear cell hidradenoma targets the same genes and results in identical gene fusions, indicating that at least subgroups of these glandular tumors evolve through activation of the same molecular pathways. © 2005 Wiley-Liss, Inc.
Endometrial adenocarcinoma (EAC) is the most common form of malignancy in the female genital tract, ranking as the fourth leading form of invasive tumors that affect women. The BDII inbred rat strain has been used as a powerful tumor model in studies of the genetic background of EAC. Females from the BDII strain are prone to develop tumors with an incidence of more than 90%. Development of EAC in BDII female rats has similarities in pathogenesis, histopathological, and molecular properties to that of human, and thus represents a unique model for analysis of EAC tumorigenesis and for comparative studies in human EACs. In a previous study, a set of rat EAC cell lines derived from tumors developed in female crossprogenies between BDII and nonsusceptible rat strains were analyzed by spectral karyotyping (SKY). Here we present an analysis with specific focus on the impact of different genetic backgrounds on the rate and occurrence of genetic aberrations in experimental tumors using data presented in the previous report. We could reveal that the ploidy state, and the abundance and type of structural as well as numerical change differed between the two genetic setups. We have also identified chromosomes harboring aberrations independent of genetic input from the nonsusceptible strains, which provide valuable information for the identification of the genes involved in the development of EAC in the BDII model as well as in human endometrial tumors.
The tumor-suppressor gene PTEN (phosphatase and tensin homolog) is frequently inactivated in different types of human tumors. Less is known about the involvement of the homologous gene Pten in animal model systems of cancer. By sequencing one of the introns of rat Pten, we found an informative intragenic PCR marker suitable for genetic studies. Through use of this marker, the position of Pten in the genetic linkage map was localized to the distal part of rat chromosome 1 (RNO1) by analysis of F2 progeny from an intercross between inbred strains BN and LE. Subsequently, 22 markers from this region (including the intragenic Pten marker) were used to study the occurrence of allelic imbalance in distal RNO1 in fibrosarcomas that had been induced by DMBA in F1(BN×LE) rats. The analysis revealed that allelic imbalance was common in the vicinity of Pten, and there was loss or reduction of one of the Pten alleles in more than 60% of the fibrosarcomas. DNA sequencing was preformed to investigate whether the Pten allele remaining in the tumors was inactivated by mutation. However, no mutations were detected in the genomic sequence of Pten exons 5 to 9 in any of the fibrosarcomas, and normal mRNA transcripts were expressed in all tumors. Thus, based on the targeted selection for loss of Pten observed in some of these tumors and the absence of inactivation of the remaining allele, we suggest that haploinsufficiency of Pten may be an important factor in rat DMBA-induced fibrosarcomas. © 2002 Wiley-Liss, Inc.