his.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Tajsharghi, Homa
    et al.
    Department of Pathology, Göteborg University, Sahlgrenska Hospital, Göteborg, Sweden.
    Pilon, Marc
    Chalmers University, Lundberg Laboratory, Göteborg, Sweden.
    Oldfors, Anders
    Department of Pathology, Göteborg University, Sahlgrenska Hospital, Göteborg, Sweden.
    A Caenorhabditis elegans model of the myosin heavy chain IIa E706K [corrected] mutation2005In: Annals of Neurology, ISSN 0364-5134, E-ISSN 1531-8249, Vol. 58, no 3, p. 442-448Article in journal (Refereed)
    Abstract [en]

    Mutations in myosin heavy chain (MyHC) genes recently have been shown to be associated with various forms of congenital myopathies: myosin myopathies. The MyHC IIa E706K mutation is associated with congenital joint contractures, early-onset muscle weakness, and progressive course with moderate to severe muscle weakness later in life. To study the pathogenicity of this MyHC mutation, we investigated the effect of the corresponding mutation (E710K) in the major MyHC isoform (MyHC B) of the body wall muscle of the nematode Caenorhabditis elegans. Worms with null mutations in the MyHC B gene (unc-54) are severely paralyzed and depleted of thick filaments in the body wall muscle sarcomeres. unc-54 null mutants with extrachromosomal arrays of a gene construct including the entire wild-type unc-54 gene were partially rescued as determined by a motility assay and by morphological analysis of the body wall muscle. Analysis of unc-54 null mutants with extrachromosomal arrays of the unc-54 gene with the E710K mutation were severely paralyzed but showed formation of thick filaments in the body wall muscle. We conclude that the MyHC E706K (E710K in C. elegans) mutation is pathogenic and that the effect is primarily functional rather than structural because thick filaments are formed. The C. elegans model may be useful to study suspected pathogenic mutations in MyHC genes associated with human muscle diseases.

  • 2.
    Tajsharghi, Homa
    et al.
    Department of Pathology, Neuromuscular Center, Sahlgrenska University Hospital, Göteborg, Sweden.
    Thornell, Lars-Eric
    Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå.
    Lindberg, Christopher
    Department of Neurology, Neuromuscular Center, Sahlgrenska University Hospital, Göteborg, Sweden.
    Lindvall, Björn
    Neuromuscular Unit, University Hospital, Linköping, Sweden.
    Henriksson, Karl-Gösta
    Neuromuscular Unit, University Hospital, Linköping, Sweden.
    Oldfors, Anders
    Department of Pathology, Neuromuscular Center, Sahlgrenska University Hospital, Göteborg, Sweden.
    Myosin storage myopathy associated with a heterozygous missense mutation in MYH72003In: Annals of Neurology, ISSN 0364-5134, E-ISSN 1531-8249, Vol. 54, no 4, p. 494-500Article in journal (Refereed)
    Abstract [en]

    Myosin constitutes the major part of the thick filaments in the contractile apparatus of striated muscle. MYH7 encodes the slow/beta-cardiac myosin heavy chain (MyHC), which is the main MyHC isoform in slow, oxidative, type 1 muscle fibers of skeletal muscle. It is also the major MyHC isoform of cardiac ventricles. Numerous missense mutations in the globular head of slow/beta-cardiac MyHC are associated with familial hypertrophic cardiomyopathy. We identified a missense mutation, Arg1845Trp, in the rod region of slow/beta-cardiac MyHC in patients with a skeletal myopathy from two different families. The myopathy was characterized by muscle weakness and wasting with onset in childhood and slow progression, but no overt cardiomyopathy. Slow, oxidative, type 1 muscle fibers showed large inclusions consisting of slow/beta-cardiac MyHC. The features were similar to a previously described entity: hyaline body myopathy. Our findings indicate that the mutated residue of slow/beta-cardiac MyHC is essential for the assembly of thick filaments in skeletal muscle. We propose the term myosin storage myopathy for this disease.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf