his.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ståhl, Niclas
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Mathiason, Gunnar
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Falkman, Göran
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Karlsson, Alexander
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Using recurrent neural networks with attention for detecting problematic slab shapes in steel rolling2019In: Applied Mathematical Modelling, ISSN 0307-904X, E-ISSN 1872-8480, Vol. 70, p. 365-377Article in journal (Refereed)
    Abstract [en]

    The competitiveness in the manufacturing industry raises demands for using recent data analysis algorithms for manufacturing process development. Data-driven analysis enables extraction of novel knowledge from already existing sensors and data, which is necessary for advanced manufacturing process refinement involving aged machinery. Improved data analysis enables factories to stay competitive against newer factories, but without any hefty investment. In large manufacturing operations, the dependencies between data are highly complex and therefore very difficult to analyse manually. This paper applies a deep learning approach, using a recurrent neural network with long short term memory cells together with an attention mechanism to model the dependencies between the measured product shape, as measured before the most critical manufacturing operation, and the final product quality. Our approach predicts the ratio of flawed products already before the critical operation with an AUC-ROC score of 0.85, i.e., we can detect more than 80 % of all flawed products while having less than 25 % false positive predictions (false alarms). In contrast to previous deep learning approaches, our method shows how the recurrent neural network reasons about the input shape, using the attention mechanism to point out which parts of the product shape that have the highest influence on the predictions. Such information is crucial for both process developers, in order to understand and improve the process, and for process operators who can use the information to learn how to better trust the predictions and control the process.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf