Högskolan i Skövde

his.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Beldar, Pedram
    et al.
    Department of Business Development, Sepid Makian Company, Rasht, Guilan, Iran ; Department of Industrial Engineering, Payame Noor University, Tehran, Iran.
    Moghtader, Milad
    Vista Samaneh Asa Company, Tehran, Iran ; Department of Computer Engineering, Islamic Azad University, Rasht, Guilan, Iran.
    Giret, Adriana
    VRAIN - Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de València, Valencia, Spain.
    Ansaripoor, Amir Hossein
    School of Management, Curtin Business School, Bentley, WA, Australia.
    Non-identical parallel machines batch processing problem with release dates, due dates and variable maintenance activity to minimize total tardiness2022In: Computers & industrial engineering, ISSN 0360-8352, E-ISSN 1879-0550, Vol. 168, article id 108135Article in journal (Refereed)
    Abstract [en]

    Combination of job scheduling and maintenance activity has been widely investigated in the literature. We consider a non-identical parallel machines batch processing (BP) problem with release dates, due dates and variable maintenance activity to minimize total tardiness. An original mixed integer linear programming (MILP) model is formulated to provide an optimal solution. As the problem under investigation is known to be strongly NP-hard, two meta-heuristic approaches based on Simulated Annealing (SA) and Variable Neighborhood Search (VNS) are developed. A constructive heuristic method (H) is proposed to generate initial feasible solutions for the SA and VNS. In order to evaluate the results of the proposed solution approaches, a set of instances were randomly generated. Moreover, we compare the performance of our proposed approaches against four meta-heuristic algorithms adopted from the literature. The obtained results indicate that the proposed solution methods have a competitive behaviour and they outperform the other meta-heuristics in most instances. Although in all cases, H + SA is the most performing algorithm compared to the others.

  • 2.
    Li, Dan
    et al.
    Chalmers University of Technology, Department of Industrial and Materials Science.
    Fast-Berglund, Åsa
    Chalmers University of Technology, Department of Industrial and Materials Science.
    Paulin, Dan
    Chalmers University of Technology, Department of Technology Management and Economics.
    Thorvald, Peter
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Exploration of Digitalized Presentation of Information for Operator 4.0: Five Industrial Cases2022In: Computers & industrial engineering, ISSN 0360-8352, E-ISSN 1879-0550, Vol. 168, article id 108048Article in journal (Refereed)
    Abstract [en]

    In the digital transformation of manufacturing companies towards Industry 4.0, shop-floor operators of the future, Operator 4.0, will require digitalized presentation of information as cognitive support for their work. This paper explores five industrial cases where Information Support Technology have been conceptualized and developed. These cases have exemplified how digitalized presentation of information can be approached with considerations of operators with varying cognitive work situations and production characteristics. Furthermore, these new technical capabilities have increased the level of cognitive automation to support operators’ individual abilities to perform their work in an increasingly more complex production environment. In conclusion, Information Support Technology in the service of Operator 4.0 is intimately linked with digitalization strategies for transformation towards Industry 4.0.

  • 3.
    Mahmoodi, Ehsan
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Fathi, Masood
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Division of Industrial Engineering and Management, Department of Civil and Industrial Engineering, Uppsala University, Sweden.
    Ghobakhloo, Morteza
    Division of Industrial Engineering and Management, Department of Civil and Industrial Engineering, Uppsala University, Sweden ; School of Economics and Business, Kaunas University of Technology, Lithuania.
    The impact of Industry 4.0 on bottleneck analysis in production and manufacturing: Current trends and future perspectives2022In: Computers & industrial engineering, ISSN 0360-8352, E-ISSN 1879-0550, Vol. 174, article id 108801Article, review/survey (Refereed)
    Abstract [en]

    Bottleneck analysis, known as one of the essential lean manufacturing concepts, has been extensively researched in the literature. Recently, there has been a move towards using new Industry 4.0-based concepts and technologies in the development of bottleneck analysis. However, the interrelations between bottleneck analysis and Industry 4.0 have not been studied thoroughly. The present study addresses this gap and performs a systematic literature review on articles available in major scientific databases (i.e., Web of Science and Scopus) to investigate the impact of Industry 4.0 on the advancement of bottleneck analysis in production and manufacturing. Bibliometric analysis and content review were performed to extract the quantitative and qualitative data. Results revealed that only five out of 15 design principles and five out of eleven technologies of Industry 4.0 were addressed previously in developing bottleneck analysis methods. In addition to highlighting the existing gaps in the literature and proposing topics for future research, several potential development streams are proposed by studying the design principles and technologies of Industry 4.0, which have not been considered in bottleneck analysis before.

    Download full text (pdf)
    fulltext
  • 4.
    Mattsson, Sandra
    et al.
    Chalmers University of Technology.
    Fast-Berglund, Åsa
    Chalmers University of Technology.
    Li, Dan
    Chalmers University of Technology.
    Thorvald, Peter
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Forming a cognitive automation strategy for Operator 4.0 in complex assembly2020In: Computers & industrial engineering, ISSN 0360-8352, E-ISSN 1879-0550, Vol. 139, article id 105360Article in journal (Refereed)
    Abstract [en]

    Due to today’s technological advances in the area of Industry 4.0, having a strategy for cognitive automation solutions is crucial. Operator 4.0, will have handle and manage different work tasks ranging from learning new tasks to solving difficult problems and initiate changes. To support the operator moving between these tasks a strategy for the design of cognitive automation solutions is needed. The suggested strategy has three steps: 1) select assembly phases, 2) choose level of cognitive automation carrier and 3) suggest cognitive automation content. It is important that the operator is part of the design and that the solution supports movement between the phases learning, operational and disruptive phases. The strategy could support manufacturing companies meeting challenges regarding social sustainability e.g. stress, attractive workplaces and demography changes as well as system transparency and complexity.

  • 5.
    Nourmohammadi, Amir
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Fathi, Masood
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Division of Industrial Engineering and Management, Uppsala University, Sweden.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Division of Industrial Engineering and Management, Uppsala University, Sweden.
    Balancing and scheduling human-robot collaborated assembly lines with layout and objective consideration2024In: Computers & industrial engineering, ISSN 0360-8352, E-ISSN 1879-0550, Vol. 187, article id 109775Article in journal (Refereed)
    Abstract [en]

    The recent Industry 4.0 trend, followed by the technological advancement of collaborative robots, has urged many industries to shift towards new types of assembly lines with human-robot collaboration (HRC). This type of manufacturing line, in which human skill is supported by robot agility, demands an integrated balancing and scheduling of tasks and operators among the stations. This study attempts to deal with these joint problems in the straight and U-shaped assembly lines while considering different objectives, namely, the number of stations (Type-1), the cycle time (Type-2), and the cost of stations, operators, and robot energy consumption (Type-rw). The latter type often arises in the real world, where multiple types of humans and robots with different skills and energy levels can perform the assembly tasks collaboratively or in parallel at stations. Additionally, practical constraints, namely robot tool changes, zoning, and technological requirements, are considered in Type-rw. Accordingly, different mixed-integer linear programming (MILP) models for straight and U-shaped layouts are proposed with efficient lower and upper bounds for each objective. The computational results validate the efficiency of the proposed MILP model with bounded objectives while addressing an application case and different test problem sizes. In addition, the analysis of results shows that the U-shaped layout offers greater flexibility than the straight line, leading to more efficient solutions for JIT production, particularly in objective Type-2 followed by Type-rw and Type-1. Moreover, the U-shaped lines featuring a high HRC level can further enhance the achievement of desired objectives compared to the straight lines with no or limited HRC.

    Download full text (pdf)
    fulltext
  • 6.
    Pehrsson, Leif
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Stockton, David
    Centre for Manufacturing, De Montfort University, Leicester, UK.
    Industrial cost modelling and multi-objective optimisation for decision support in production systems development2013In: Computers & industrial engineering, ISSN 0360-8352, E-ISSN 1879-0550, Vol. 66, no 4, p. 1036-1048Article in journal (Refereed)
    Abstract [en]

    Recent developments in cost modelling, simulation-based multi-objective optimisation, and post-optimality analysis have enabled the integration of costing data and cost estimation into a new methodology for supporting economically sound decision-making in manufacturing enterprises. Within this methodology, the combination of production engineering and financial data with multi-objective optimisation and post-optimality analysis has been proven to provide the essential information to facilitate knowledge-driven decision-making in real-world production systems development. The focus of this paper is to present the incremental cost modelling technique specifically designed for the integration with discrete-event simulation models and multi-objective optimisation within this methodology. A complete example, using the simulation model and data modified from a previous real-world case study, is provided in this paper to illustrate how the methodology and cost modelling are applied for the optimal investment decision support.

  • 7.
    Syberfeldt, Anna
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Karlsson, Ingemar
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Svantesson, Joakim
    Volvo Aero Corporation, SE- 461 81 Trollhättan, Sweden.
    Almgren, Torgny
    Volvo Aero Corporation, SE- 461 81 Trollhättan, Sweden.
    A web-based platform for the simulation-optimization of industrial problems2013In: Computers & industrial engineering, ISSN 0360-8352, E-ISSN 1879-0550, Vol. 64, no 4, p. 987-998Article in journal (Refereed)
    Abstract [en]

    This study presents a platform for industrial, real-world simulation-optimization based on web techniques. The design of the platform is intended to be generic and thereby make it possible to apply the platform in various problem domains. In the implementation of the platform, modern web techniques, such as Ajax, JavaScript, GWT, and ProtoBuf, are used. The platform is tested and evaluated on a real industrial problem of production optimization at Volvo Aero Corporation, a company that develops and manufactures high-technology components for aircraft and gas turbine engines. The results of the evaluation show that while the platform has several benefits, implementing a web-based system is not completely straightforward. At the end of the paper, possible pitfalls are discussed and some recommendations for future implementations are outlined.

    Download full text (pdf)
    fulltext
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf