his.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Delsing, Louise
    et al.
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre. Department of Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden / Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden.
    Kallur, Therese
    BioLamina, Sundbyberg, Sweden.
    Zetterberg, Henrik
    Department of Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Sweden / Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden / Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK / UK Dementia Research Institute at UCL, London, UK.
    Hicks, Ryan
    Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden.
    Synnergren, Jane
    University of Skövde, School of Bioscience. University of Skövde, The Systems Biology Research Centre.
    Enhanced xeno-free differentiation of hiPSC-derived astroglia applied in a blood-brain barrier model2019In: Fluids and Barriers of the CNS, ISSN 2045-8118, E-ISSN 2045-8118, Vol. 16, no 1, article id 27Article in journal (Refereed)
    Abstract [en]

    Background Human induced pluripotent stem cells (hiPSC) hold great promise for use in cell therapy applications and for improved in vitro models of human disease. So far, most hiPSC differentiation protocols to astroglia use undefined, animal-containing culture matrices. Laminins, which play an essential role in the regulation of cell behavior, offer a source of defined, animal-free culture matrix. Methods In order to understand how laminins affect astroglia differentiation, recombinant human laminin-521 (LN521), was compared to a murine Engelbreth-Holm-Swarm sarcoma derived laminin (L2020). Astroglia expression of protein and mRNA together with glutamate uptake and protein secretion function, were evaluated. Finally, these astroglia were evaluated in a coculture model of the blood-brain barrier (BBB). Results Astroglia of good quality were generated from hiPSC on both LN521 and L2020. However, astroglia differentiated on human LN521 showed higher expression of several astroglia specific mRNAs and proteins such as GFAP, S100B, Angiopoietin-1, and EAAT1, compared to astroglia differentiated on murine L2020. In addition, glutamate uptake and ability to induce expression of junction proteins in endothelial cells were affected by the culture matrix for differentiation. Conclusion Our results suggest that astroglia differentiated on LN521 display an improved phenotype and are suitable for coculture in a hiPSC-derived BBB model. This provides a starting point for a more defined and robust derivation of astroglia for use in BBB coculture models.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf