his.sePublikasjoner
Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bandaru, Sunith
    et al.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Aslam, Tehseen
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Ng, Amos
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Deb, Kalyanmoy
    Department of Electrical and Computer Engineering, Michigan State University, East Lansing, USA.
    Generalized higher-level automated innovization with application to inventory management2015Inngår i: European Journal of Operational Research, ISSN 0377-2217, E-ISSN 1872-6860, Vol. 243, nr 2, s. 480-496Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper generalizes the automated innovization framework using genetic programming in the context of higher-level innovization. Automated innovization is an unsupervised machine learning technique that can automatically extract significant mathematical relationships from Pareto-optimal solution sets. These resulting relationships describe the conditions for Pareto-optimality for the multi-objective problem under consideration and can be used by scientists and practitioners as thumb rules to understand the problem better and to innovate new problem solving techniques; hence the name innovization (innovation through optimization). Higher-level innovization involves performing automated innovization on multiple Pareto-optimal solution sets obtained by varying one or more problem parameters. The automated innovization framework was recently updated using genetic programming. We extend this generalization to perform higher-level automated innovization and demonstrate the methodology on a standard two-bar bi-objective truss design problem. The procedure is then applied to a classic case of inventory management with multi-objective optimization performed at both system and process levels. The applicability of automated innovization to this area should motivate its use in other avenues of operational research.

  • 2.
    Linnéusson, Gary
    et al.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Ng, Amos H. C.
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    Aslam, Tehseen
    Högskolan i Skövde, Institutionen för ingenjörsvetenskap. Högskolan i Skövde, Forskningscentrum för Virtuella system.
    A hybrid simulation-based optimization framework for supporting strategic maintenance to improve production performance2019Inngår i: European Journal of Operational Research, ISSN 0377-2217, E-ISSN 1872-6860Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Managing maintenance and its impact on business results is increasingly complex, calling for more advanced operational research methodologies to address the challenge of sustainable decision-making. This problem-based research has identified a framework of methods to supplement the operations research/management science literature by contributing a hybrid simulation-based optimization framework (HSBOF), extending previously reported research.

    Overall, it is the application of multi-objective optimization (MOO) with system dynamics (SD) and discrete-event simulation (DES) respectively which allows maintenance activities to be pinpointed in the production system based on analyzes generating less reactive work load on the maintenance organization. Therefore, the application of the HSBOF informs practice by a multiphase process, where each phase builds knowledge, starting with exploring feedback behaviors to why certain near-optimal maintenance behaviors arise, forming the basis of potential performance improvements, subsequently optimized using DES+MOO in a standard software, prioritizing the sequence of improvements in the production system for maintenance to implement.

    Studying literature on related hybridizations using optimization the proposed work can be considered novel, being based on SD+MOO industrial cases and their application to a DES+MOO software.

  • 3.
    Syberfeldt, Anna
    et al.
    Högskolan i Skövde, Forskningscentrum för Virtuella system. Högskolan i Skövde, Institutionen för teknik och samhälle.
    Ng, Amos
    Högskolan i Skövde, Forskningscentrum för Virtuella system. Högskolan i Skövde, Institutionen för teknik och samhälle.
    John, Robert I.
    De Montfort University.
    Moore, Philip
    De Montfort University.
    Evolutionary optimisation of noisy multi-objective problems using confidence-based dynamic resampling2010Inngår i: European Journal of Operational Research, ISSN 0377-2217, E-ISSN 1872-6860, Vol. 204, nr 3, s. 533-544Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Many real-world optimisation problems approached by evolutionary algorithms are subject to noise. When noise is present, the evolutionary selection process may become unstable and the convergence of the optimisation adversely affected. In this paper, we present a new technique that efficiently deals with noise in multi-objective optimisation. This technique aims at preventing the propagation of inferior solutions in the evolutionary selection due to noisy objective values. This is done by using an iterative resampling procedure that reduces the noise until the likelihood of selecting the correct solution reaches a given confidence level. To achieve an efficient utilisation of resources, the number of samples used per solution varies based on the amount of noise in the present area of the search space. The proposed algorithm is evaluated on the ZDT benchmark problems and two complex real-world problems of manufacturing optimisation. The first real-world problem concerns the optimisation of engine component manufacturing in aviation industry, while the second real-world problem concerns the optimisation of a camshaft machining line in automotive industry. The results from the optimisations indicate that the proposed technique is successful in reducing noise, and it competes successfully with other noise handling techniques.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf