his.sePublications
Change search
Refine search result
1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bi, Z. M.
    et al.
    Department of Engineering, Indiana University Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805, United States.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Advances in 3D data acquisition and processing for industrial applications2010In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 26, no 5, p. 403-413Article, review/survey (Refereed)
    Abstract [en]

    A critical task of vision-based manufacturing applications is to generate a virtual representation of a physical object from a dataset of point clouds. Its success relies on reliable algorithms and tools. Many effective technologies have been developed to solve various problems involved in data acquisition and processing. Some articles are available on evaluating and reviewing these technologies and underlying methodologies. However, for most practitioners who lack a strong background on mathematics and computer science, it is hard to understand theoretical fundamentals of the methodologies. In this paper, we intend to survey and evaluate recent advances in data acquisition and progressing,and provide an overview from a manufacturing perspective. Some potential manufacturing applications have been introduced, the technical gaps between the practical requirements and existing technologies discussed, and research opportunities identified.

  • 2.
    Bi, Z. M.
    et al.
    Indiana University-Purdue University Fort Wayne, USA.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Optimal design of reconfigurable parallel machining systems2009In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 25, no 6, p. 951-961Article in journal (Refereed)
    Abstract [en]

    A reconfigurable machining system is usually a modularized system, and its configuration design concerns the selections of modules and the determination of geometric dimensions in some specific modules. All of its design perspectives from kinematics, dynamics, and control have to be taken into considerations simultaneously, and a multidisciplinary design optimization (MDO) tool is required to support the configuration design process. This paper presents a new MDO tool for reconfigurable machining systems, and it includes the following works: (i) the literatures on the computer-aided design of reconfigurable parallel machining systems have been reviewed with a conclusion that the multidisciplinary design optimization is essential, but no comprehensive design tool is available to reconfigurable parallel machining systems; (ii) a class of reconfigurable systems called reconfigurable tripod-based machining system has been introduced, its reconfiguration problem is identified, and the corresponding design criteria have been discussed; (iii) design analysis in all of the disciplines including kinematics, dynamics, and control have been taken into considerations, and design models have been developed to evaluate various design candidates; in particular, the innovative solutions to direct kinematics, stiffness analysis for the design configurations of tripod-based machines with a passive leg, and concise dynamic modelling have been provided; and (iv) A design optimization approach is proposed to determine the best solution from all possible configurations. Based on the works presented in this paper, a computer-aided design and control tool have been implemented to support the system reconfiguration design and control processes. Some issues relevant to the practical implementation have also been discussed.

  • 3.
    Bi, Z.M.
    et al.
    Indiana University Purdue University Fort Wayne.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Dynamic control model of a cobot with three omni-wheels2010In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 26, no 6, p. 558-563Article in journal (Refereed)
    Abstract [en]

    In this paper, a new collaborative robot with omni-wheels has been proposed and its dynamic control has been developed and validated. Collaborative robots (Cobots) have been introduced to guide and assist human operators to move heavy objects in a given trajectory. Most of the existing cobots use steering wheels; typical drawbacks of using steering wheels include the difficulties to (i) follow a trajectory with a curvature larger than that of the base platform, (ii) mount encoders on steering wheels due to self-spinning of the wheels, and (iii) quarantine dynamic control performance since it is purely kinematic  control.  The  new  collaborative  robot  is  proposed  to  overcome  the  above-mentioned shortcomings. The methodologies for its dynamic control are focused and the simulation has been conducted to validate the control performance of the system.

  • 4.
    De Vin, Leo J.
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Holm, Magnus
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Ng, Amos H.C.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    The Information Fusion JDL-U model as a reference model for Virtual Manufacturing2010In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 26, no 6, p. 629-638Article in journal (Refereed)
    Abstract [en]

    This paper presents a description of Modelling and Simulation as used in the Virtual Systems Research Centre at the University of Skövde. It also gives a summarized account of issues discussed in previous work such as phases in a simulation project, Verification, Validation and Accreditation, and the use of simulation as a tool to reduce uncertainty. The role of the human in various phases/activities in simulation projects is highlighted. Examples of both traditional and advanced applications of Virtual Manufacturing are given. Examples of the latter are simulation-based monitoring and diagnostics, and simulation-based optimization. Two models for Information Fusion, the OODA loop and JDL-U model, are discussed, the latter being an extension of the JDL model that describes various levels of information fusion (JDL=“joint directors of laboratories”). Subsequently, the activities and phases in a Modelling and Simulation project are placed in the context of the JDL-U model. This comparison shows that there are very strong similarities between the six (0–5) levels in the JDL-U model and activities/phases in Modelling and Simulation projects. These similarities lead to the conclusion that the JDL-U model with its associated science base can serve as a novel reference model for Modelling and Simulation. In particular, the associated science base on the “user refinement” level could benefit the Virtual Manufacturing community.

  • 5.
    De Vin, Leo
    et al.
    University of Skövde, School of Technology and Society.
    Ng, Amos
    University of Skövde, School of Technology and Society.
    Oscarsson, Jan
    University of Skövde, School of Technology and Society.
    Andler, Sten F.
    University of Skövde, School of Technology and Society.
    Information Fusion for Simulation Based Decision Support in Manufacturing2006In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 22, no 5-6, p. 429-436Article in journal (Refereed)
    Abstract [en]

    Robust and informed decisions are important for the efficient and effective operation of installed production facilities. The paper discusses Information fusion (IF) including a generic model for IF, and situations for decision-making. The paper also discusses current and future use of manufacturing resource simulation for design/configuration, operational planning and scheduling, and service and maintenance of manufacturing systems. Many of these applications use IF in some way, as is explained in more detail for simulation based service and maintenance. An extension of the generic model for IF is presented which incorporates modeling and simulation, and active databases as used in a simulation based service and maintenance system at the authors’ laboratory

  • 6.
    Dudas, Catarina
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Frantzén, Marcus
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Ng, Amos H.C.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    A synergy of multi-objective optimization and data mining for the analysis of a flexible flow shop2011In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 27, no 4, p. 687-695Article in journal (Refereed)
    Abstract [en]

    A method for analyzing production systems by applying multi-objective optimization and data mining techniques on discrete-event simulation models, the so-called Simulation-based Innovization (SBI) is presented in this paper. The aim of the SBI analysis is to reveal insight on the parameters that affect the performance measures as well as to gain deeper understanding of the problem, through post-optimality analysis of the solutions acquired from multi-objective optimization. This paper provides empirical results from an industrial case study, carried out on an automotive machining line, in order to explain the SBI procedure. The SBI method has been found to be particularly siutable in this case study as the three objectives under study, namely total tardiness, makespan and average work-in-process, are in conflict with each other. Depending on the system load of the line, different decision variables have been found to be influencing. How the SBI method is used to find important patterns in the explored solution set and how it can be valuable to support decision making in order to improve the scheduling under different system loadings in the machining line are addressed.

  • 7.
    Frantzén, Marcus
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Ng, Amos H. C.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Moore, Philip
    Computing Sciences and Engineering, De Montfort University Leicester, LE1 9BH, United Kingdom.
    A simulation-based scheduling system for real-time optimization and decision making support2011In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 27, no 4, p. 696-705Article in journal (Refereed)
    Abstract [en]

    This paper presents an industrial application of simulation-based optimization (SBO) in the scheduling and real-time rescheduling of a complex machining line in an automotive manufacturer in Sweden. Apart from generating schedules that are robust and adaptive, the scheduler must be able to carry out rescheduling in real time in order to cope with the system uncertainty effectively. A real-time scheduling system is therefore needed to support not only the work of the production planner but also the operators on the shop floor by re-generating feasible schedules when required. This paper describes such a real-time scheduling system, which is in essence a SBO system integrated with the shop floor database system. The scheduling system, called OPTIMISE scheduling system (OSS), uses real-time data from the production line and sends back expert suggestions directly to the operators through Personal Digital Assistants (PDAs). The user interface helps in generating new schedules and enables the users to easily monitor the production progress through visualization of production status and allows them to forecast and display target performance measures. Initial results from this industrial application have shown that such a novel scheduling system can help both in improving the line throughput efficiently and simultaneously supporting real-time decision making.

  • 8.
    Givehchi, Mohammad
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Ng, Amos H. C.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Spot-welding sequence planning and optimization using a hybrid rule-based approach and genetic algorithm2011In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 27, no 4, p. 714-722Article in journal (Refereed)
    Abstract [en]

    Performing assembly planning to find a valid hierarchical assembling structure of a product (i.e. Manufacturing Bill of Materials or MBOM) based on the constraints and necessities inferred from or declared by different sources is potentially complicated. On the other hand, Engineering Changes (EC) may drastically affect the constraints and necessities which the planning of an MBOM was based on. Managing ECs to evaluate and propagate their effects on the upstream data used in assembly planning and downstream activities and information is crucial but problematic. Often it is possible to define a set of rules for the constraints and necessities of assembly planning and find solutions or check validity of solutions based on the rule-set. This paper proposes a rule-based assembly planning method and introduces the concepts and standard notations on how structured rule-sets can be derived from descriptive rules and then used in an algorithm for generating or validating MBOMs. The method was partially automated and successfully employed along with a commercial Virtual Manufacturing package integrated with an in-house developed GA-based sequence optimizer and applied to the sequence optimization in minimizing the cycle time of the robotic spot welding operations for a sheet-metal assembly found in automotive industry. (C) 2011 Elsevier Ltd. All rights reserved.

  • 9.
    Keshavarzmanesh, Shadi
    et al.
    The University of Western Ontario.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Feng, Hsi-Yung
    The University of British Columbia.
    A hybrid approach for dynamic routing planning in an automated assembly shop2010In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 26, no 6, p. 768-777Article in journal (Refereed)
    Abstract [en]

    Highly turbulent environment of dynamic job-shop operations affects shop floor layout as well as manufacturing operations. Due to the dynamic nature of layout changes, essential requirements such as adaptability and responsiveness to the changes need to be considered in addition to the cost issues of material handling and machine relocation when reconfiguring a shop floor’s layout. Here, based on the source of uncertainty, the shop floor layout problem is split into two sub-problems and dealt with by two modules: re-layout and find-route. GA is used where changes cause the entire shop re-layout, while function blocks are utilised to find the best sequence of robots for the new conditions within the existing layout. This paper reports the latest development to the authors’ previous work.

  • 10.
    Schmidt, Bernard
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Engineering Science.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Engineering Science. Department of Production Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
    Automatic work objects calibration via a global-local camera system2014In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 30, no 6, p. 678-683Article in journal (Refereed)
    Abstract [en]

    In a human–robot collaborative manufacturing application where a work object can be placed in an arbitrary position, there is a need to calibrate the actual position of the work object. This paper presents an approach for automatic work-object calibration in flexible robotic systems. The approach consists of two modules: a global positioning module based on fixed cameras mounted around robotic workspace, and a local positioning module based on the camera mounted on the robot arm. The aim of the global positioning is to detect the work object in the working area and roughly estimate its position, whereas the local positioning is to define an object frame according to the 3D position and orientation of the work object with higher accuracy. For object detection and localization, coded visual markers are utilized. For each object, several markers are used to increase the robustness and accuracy of the localization and calibration procedure. This approach can be used in robotic welding or assembly applications.

  • 11.
    Syberfeldt, Anna
    et al.
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Ng, Amos
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    John, Robert I.
    Centre for Computational Intelligence, De Montfort University, Leicester, United Kingdom.
    Moore, Philip
    Computing Sciences and Engineering, De Montfort University, Leicester, United Kingdom.
    Multi-objective evolutionary simulation-optimisation of a real-world manufacturing problem2009In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 25, no 6, p. 926-931Article in journal (Refereed)
    Abstract [en]

    Many real-world manufacturing problems are too complex to be modelled analytically. For these problems, simulation can be a powerful tool for system analysis and optimisation. While traditional optimisation methods have been unable to cope with the complexities of many problems approached by simulation, evolutionary algorithms have proven to be highly useful. This paper describes how simulation and evolutionary algorithms have been combined to improve a manufacturing cell at Volvo Aero in Sweden. This cell produces high-technology engine components for civilian and military airplanes, and also for space rockets. Results from the study show that by using simulation and evolutionary algorithms, it is possible to increase the overall utilisation of the cell and at the same time decrease the number of overdue components.

  • 12.
    Thorvald, Peter
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Lindblom, Jessica
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Andreasson, Rebecca
    Uppsala University, Department of Information Technology, Uppsala, Sweden.
    On the development of a method for cognitive load assessment in manufacturing2019In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 59, p. 252-266Article in journal (Refereed)
    Abstract [en]

    The increasing complexity and demands of assembly operations in manufacturing has been shown to lead to increased cognitive load in assembly workers. Previous work has outlined the complexity of an assembly worker's situation both in terms of difficulty and speed of work and there have been a few attempts at creating frameworks and methods for understanding the key aspects of what creates increased cognitive load. This paper presents the development of an analytic method, denoted CLAM (Cognitive Load Assessment for Manufacturing), and a tool for assessing cognitive load in manufacturing, primarily assembly. It outlines the journey of the development as well as discusses and problematizes relevant meta-methodological issues paired with method development. The intended contribution of the work is to make a difference in reducing the cognitive load of assembly workers on the shop floor, thus focusing the development on applicability and usability of the tool in practice. With this purpose in mind, focus of the method development has been on the practitioners, i.e. the method should not require any expert knowledge to be applied. The CLAM method and accompanying documentation such as a handbook containing instructions towards using the method and interpreting the results, is available in an online tool.

1 - 12 of 12
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf