Högskolan i Skövde

his.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    García-García, Daniel
    et al.
    Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Alicante, Spain.
    Balart, Rafael
    Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Alicante, Spain.
    Lopez-Martinez, Juan
    Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), Alicante, Spain.
    Ek, Monica
    School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH-Royal Institute of Technology, Stockholm, Sweden.
    Moriana, Rosana
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH-Royal Institute of Technology, Stockholm, Sweden.
    Optimizing the yield and physico-chemical properties of pine cone cellulose nanocrystals by different hydrolysis time2018In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 5, p. 2925-2938Article in journal (Refereed)
    Abstract [en]

    Cellulose nanocrystals (CNCs) were isolated for the first time from pine cones (PC) by alkali and bleaching treatments and subsequent sulfuric acid hydrolysis (64%) at 45 degrees C. The influence of the hydrolytic reaction time (30, 45, and 90 min) on the yield, chemical composition and structure, and thermal stability of CNCs was evaluated. The removal of non-cellulosic constituents during the alkaline and bleaching treatment resulted in high pure cellulosic fibres. The isolation of CNCs from these cellulosic fibres at different reaction times was verified by the nano-dimensions of the individual crystals (< 3 and < 335 nm of average diameter and length, respectively). The highest yield (15%) and the optimum CNCs properties in terms of aspect ratio, thermal stability and crystallinity were obtained for an extraction time of 45 min. PC appeared to be a new promising source of cellulose fibres and CNCs with potential to be applied as reinforcement in composites and for food-packaging.

    Download full text (pdf)
    fulltext
  • 2.
    Moriana, Rosana
    et al.
    KTH Royal Institute of Technology.
    Vilaplana, Francisco
    KTH Royal Institute of Technology.
    Ek, Monica
    KTH Royal Institute of Technology.
    Cellulose Nanocrystals from Forest Residues as Reinforcing Agents for Composites: A Study from Macro- to Nano-Dimensions2016In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 139, p. 139-149Article in journal (Refereed)
    Abstract [en]

    This study investigates for the first time the feasibility of extracting cellulose nanocrystals (CNCs) from softwood forestry logging residues (woody chips, branches and pine needles), with an obtained gravimetric yield of over 13%. Compared with the other residues, woody chips rendered a higher yield of bleached cellulosic fibers with higher hemicellulose, pectin and lignin content, longer diameter, and lower crystallinity and thermal stability. The isolation of CNCs from these bleached cellulosic fibers was verified by the removal of most of their amorphous components, the increase in the crystallinity index, and the nano-dimensions of the individual crystals. The differences in the physico-chemical properties of the fibers extracted from the three logging residues resulted in CNCs with specific physico-chemical properties. The potential of using the resulting CNCs as reinforcements in nanocomposites was discussed in terms of aspect ratio, crystallinity and thermal stability.

  • 3.
    Moriana, Rosana
    et al.
    KTH Royal Institute of Technology.
    Vilaplana, Francisco
    KTH Royal Institute of Technology.
    Ek, Monica
    KTH Royal Institute of Technology.
    Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties2015In: Cellulose, ISSN 0969-0239, E-ISSN 1572-882X, Vol. 22, no 5, p. 3409-3423Article in journal (Refereed)
    Abstract [en]

    The potential of three different logging residues (woody chips, branches and pine needles) as renewable resources to produce environmentally friendly polymeric materials and/or biofuel has been critically evaluated in terms of their structure, chemical composition and thermal properties. Woody chips constitute the most attractive forest residue to be processed into polymeric materials in terms of their highest cellulose content, crystallinity and thermal stability. In contrast, pine needles and branches offer higher heating values and optimum product distribution for solid fuel applications due to their higher lignin content. In general, forest residual biomass has great potential for conversion into new added value products, such as composites or solid biofuel, thus constituting a sustainable waste management procedure from a biorefinery perspective. The correlation between the chemical and structural properties with the thermal/pyrolytic behavior of residual biomass offers valuable insights to assess their sustainable exploitation.

  • 4.
    Moriana, Rosana
    et al.
    KTH Royal Institute of Technology.
    Zhang, Yujia
    KTH Royal Institute of Technology.
    Mischnick, Petra
    Technische Universität Braunschweig, Germany.
    Li, Jiebing
    KTH Royal Institute of Technology.
    Ek, Monica
    KTH Royal Institute of Technology / Chalmers University of Technology.
    Thermal degradation behavior and kinetic analysis of spruce glucomannan and its methylated derivatives2014In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 106, no 1, p. 60-70Article in journal (Refereed)
    Abstract [en]

    The thermal degradation behavior and kinetics of spruce glucomannan (SGM) and its methylated derivatives were investigated using thermogravimetric analysis to characterize its temperature-dependent changes for use in specific applications. The results were compared with those obtained for commercial konjac glucomannan (KGM). The SGM and the KGM exhibited two overlapping peaks from 200 to 375 C, which correspond to the intensive devolatilization of more than 59% of the total weight. Differences in the pyrolysis-product distributions and thermal stabilities appeared as a result of the different chemical compositions and molecular weights of the two GMs. The Friedman and Flynn-Wall-Ozawa isoconversional methods and the Coats-Redfern were adopted to determine the kinetic triplet of the intensive devolatilization region. Both GMs can be modeled using a complex mechanism that involves both a Dn-type and an Fn-type reaction. The comparative study of partially methylated GM indicated higher homogeneity and thermal resistance for the material with the higher degree of substitution.

  • 5.
    Oinonen, Petri
    et al.
    KTH, Träkemi och massateknologi.
    Moriana, Rosana
    KTH, Träkemi och massateknologi.
    Krawczyk, Holger
    Ek, Monica
    KTH, Träkemi och massateknologi.
    Henriksson, Gunnar
    KTH, Träkemi och massateknologi.
    The composite formation of cross-linked galactoglucomannan-lignin networks and cellulose nanoparticles as defined by thermal and mechanical testingManuscript (preprint) (Other academic)
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf