Cellulose nanocrystals (CNCs) were isolated for the first time from pine cones (PC) by alkali and bleaching treatments and subsequent sulfuric acid hydrolysis (64%) at 45 degrees C. The influence of the hydrolytic reaction time (30, 45, and 90 min) on the yield, chemical composition and structure, and thermal stability of CNCs was evaluated. The removal of non-cellulosic constituents during the alkaline and bleaching treatment resulted in high pure cellulosic fibres. The isolation of CNCs from these cellulosic fibres at different reaction times was verified by the nano-dimensions of the individual crystals (< 3 and < 335 nm of average diameter and length, respectively). The highest yield (15%) and the optimum CNCs properties in terms of aspect ratio, thermal stability and crystallinity were obtained for an extraction time of 45 min. PC appeared to be a new promising source of cellulose fibres and CNCs with potential to be applied as reinforcement in composites and for food-packaging.
This study investigates for the first time the feasibility of extracting cellulose nanocrystals (CNCs) from softwood forestry logging residues (woody chips, branches and pine needles), with an obtained gravimetric yield of over 13%. Compared with the other residues, woody chips rendered a higher yield of bleached cellulosic fibers with higher hemicellulose, pectin and lignin content, longer diameter, and lower crystallinity and thermal stability. The isolation of CNCs from these bleached cellulosic fibers was verified by the removal of most of their amorphous components, the increase in the crystallinity index, and the nano-dimensions of the individual crystals. The differences in the physico-chemical properties of the fibers extracted from the three logging residues resulted in CNCs with specific physico-chemical properties. The potential of using the resulting CNCs as reinforcements in nanocomposites was discussed in terms of aspect ratio, crystallinity and thermal stability.
The potential of three different logging residues (woody chips, branches and pine needles) as renewable resources to produce environmentally friendly polymeric materials and/or biofuel has been critically evaluated in terms of their structure, chemical composition and thermal properties. Woody chips constitute the most attractive forest residue to be processed into polymeric materials in terms of their highest cellulose content, crystallinity and thermal stability. In contrast, pine needles and branches offer higher heating values and optimum product distribution for solid fuel applications due to their higher lignin content. In general, forest residual biomass has great potential for conversion into new added value products, such as composites or solid biofuel, thus constituting a sustainable waste management procedure from a biorefinery perspective. The correlation between the chemical and structural properties with the thermal/pyrolytic behavior of residual biomass offers valuable insights to assess their sustainable exploitation.
The thermal degradation behavior and kinetics of spruce glucomannan (SGM) and its methylated derivatives were investigated using thermogravimetric analysis to characterize its temperature-dependent changes for use in specific applications. The results were compared with those obtained for commercial konjac glucomannan (KGM). The SGM and the KGM exhibited two overlapping peaks from 200 to 375 C, which correspond to the intensive devolatilization of more than 59% of the total weight. Differences in the pyrolysis-product distributions and thermal stabilities appeared as a result of the different chemical compositions and molecular weights of the two GMs. The Friedman and Flynn-Wall-Ozawa isoconversional methods and the Coats-Redfern were adopted to determine the kinetic triplet of the intensive devolatilization region. Both GMs can be modeled using a complex mechanism that involves both a Dn-type and an Fn-type reaction. The comparative study of partially methylated GM indicated higher homogeneity and thermal resistance for the material with the higher degree of substitution.