his.sePublications
Change search
Refine search result
12 1 - 50 of 54
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1.
    Adamson, Göran
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Kungliga Tekniska Högskolan, Stockholm (KTH).
    Holm, Magnus
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Moore, Philip
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Academy for Innovation & Research, Falmouth University, UK.
    Adaptive Robotic Control in Cloud Environments2014In: Proceedings of the 24th International Conference on Flexible Automation and Intelligent Manufacturing / [ed] F. Frank Chen, The University of Texas at San Antonio, U.S.A., Lancaster, Pennsylvania, USA: DEStech Publications, Inc , 2014, 37-44 p.Conference paper (Refereed)
    Abstract [en]

    The increasing globalization is a trend which forces manufacturing industry of today to focus on more cost-effective manufacturing systems and collaboration within global supply chains and manufacturing networks. Cloud Manufacturing (CM) is evolving as a new manufacturing paradigm to match this trend, enabling the mutually advantageous sharing of resources, knowledge and information between distributed companies and manufacturing units. Providing a framework for collaboration within complex and critical tasks, such as manufacturing and design, it increases the companies’ ability to successfully compete on a global marketplace. One of the major, crucial objectives for CM is the coordinated planning, control and execution of discrete manufacturing operations in a collaborative and networked environment. This paper describes the overall concept of adaptive Function Block control of manufacturing equipment in Cloud environments, with the specific focus on robotic assembly operations, and presents Cloud Robotics as “Robot Control-as-a-Service” within CM.

  • 2.
    Adamson, Göran
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Kungliga Tekniska Högskolan, Stockholm (KTH).
    Holm, Magnus
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Moore, Philip
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Academy for Innovation & Research, Falmouth University, UK.
    Function Block Approach for Adaptive Robotic Control in Virtual and Real Environments2014In: Proceedings of the 14th Mechatronics Forum International Conference / [ed] Leo J. De Vin and Jorge Solis, Karlstad: Karlstads universitet, 2014, 473-479 p.Conference paper (Refereed)
    Abstract [en]

    Many manufacturing companies are facing an increasing amount of changes and uncertainty, caused by both internal and external factors. Frequently changing customer and market demands lead to variations in manufacturing quantities, product design and shorter product life-cycles, and variations in manufacturing capability and functionality contribute to a high level of uncertainty. The result is unpredictable manufacturing system performance, with an increased number of unforeseen events occurring in these systems. Such events are difficult for traditional planning and control systems to satisfactorily manage. For scenarios like these, with a dynamically changing manufacturing environment, adaptive decision making is crucial for successfully performing manufacturing operations. Relying on real-time information of manufacturing processes and operations, and their enabling resources, adaptive decision making can be realized with a control approach combining IEC 61499 event-driven Function Blocks (FBs) with manufacturing features. These FBs are small decision-making modules with embedded algorithms designed to generate the desired equipment control code. When dynamically triggered by event inputs, parameter values in their data inputs are forwarded to the appropriate algorithms, which generate new events and data output as control instructions. The data inputs also include monitored real-time information which allows the dynamic creation of equipment control code adapted to the actual run-time conditions on the shop-floor. Manufacturing features build on the concept that a manufacturing task can be broken down into a sequence of minor basic operations, in this research assembly features (AFs). These features define atomic assembly operations, and by combining and implementing these in the event-driven FB embedded algorithms, automatic code generation is possible. A test case with a virtual robot assembly cell is presented, demonstrating the functionality of the proposed control approach.

  • 3.
    Alenljung, Beatrice
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Andreasson, Rebecca
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. Department of Information Technology, Visual Information & Interaction. Uppsala University, Uppsala, Sweden.
    Billing, Erik A.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Lindblom, Jessica
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    User Experience of Conveying Emotions by Touch2017In: Proceedings of the 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE, 2017, 1240-1247 p.Conference paper (Refereed)
    Abstract [en]

    In the present study, 64 users were asked to convey eight distinct emotion to a humanoid Nao robot via touch, and were then asked to evaluate their experiences of performing that task. Large differences between emotions were revealed. Users perceived conveying of positive/pro-social emotions as significantly easier than negative emotions, with love and disgust as the two extremes. When asked whether they would act differently towards a human, compared to the robot, the users’ replies varied. A content analysis of interviews revealed a generally positive user experience (UX) while interacting with the robot, but users also found the task challenging in several ways. Three major themes with impact on the UX emerged; responsiveness, robustness, and trickiness. The results are discussed in relation to a study of human-human affective tactile interaction, with implications for human-robot interaction (HRI) and design of social and affective robotics in particular. 

  • 4.
    Arias Ramos, Ceferino
    University of Skövde, School of Technology and Society.
    Programming and Image Processing in a Compact Production Cell2012Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In recent years, control system in the automation industries has become more and more useful, covering a wide range of fields, for example, industrial instrumentation, control and monitoring systems. Vision systems are used nowadays to improve products quality control, saving costs, time, and obtaining a better accuracy than a human operator in the manufacturing process of companies. Combining a vision system with a suitable automated system allow companies to cover a wide range of products and rapid production. All these factors are considered in this project.

    The aim of this project is to upgrade the functionality of a Nokia-Cell, which was used in a quality control process for the back shells of Nokia cell phones. The project includes design, upgrade and implementation of a new system in order to make the cell work properly. The Nokia-Cell is composed of the following basic modules: vision and image recognition system, automation system devices (PC and PLC, robot), and other mechatronics devices. The new system will consist of a new camera, due to the poor connectivity and quality of the old camera. For the same reason, a new PC will replace two older ones for communication and vision recognition. The new system will also include a new PLC of Beckhoff to replace the aging one of Omron so as to facilitate the connections using the same language. In addition, IEC-61499 Function Blocks standard is adopted for programming the Nokia-Cell.

    It is expected that the results of this project will contribute to both research and education in the future. In addition, it would be correctly to apply the results to industries in vision-based quality control systems.

  • 5.
    Arrieta, Aitor
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    FB-Environment in Wise-Shop Floor: Algorithm parser and code generation2012Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    IEC (International Electrotechnical Commission) is the authority that publishes different standards in the  fields  of  electrical  and  electronics  engineering,  to  be  used  internationally.  In  the  area  of manufacturing, it has demanded a new standard to fulfil better solutions of dynamic requirements. The  IEC  61499  redacted  by  IEC  offers  interoperability,  portability,  configurability  and  distributed control applications for manufacturing processes. However, this standard is not a replacement of IEC 61131-3,  one  of  the  most  used  standards  in  industry;  instead,  it  is  a  complement  of  it.  The  basic software units of IEC 61499 are named Function Blocks (FBs), which can be described as blocks that encapsulate functionality. By combining FBs together, it is possible to solve complex problems.   The  objective  of  this  project  (in  close  cooperation  with  another  project)  is  to  develop  a  software environment in Java language. It follows the requirements of IEC 61499, and implement a Function Block  designer  and  a  runtime  execution  environment,  as  a  part  of  an  existing  Wise-ShopFloor framework. The scope of this project covers:     FB  algorithm  editor:  Each  FB  has  one  or  more  algorithms,  which  can  be  defined  in  the algorithm editor using IEC 61131-3 or Java.     FB serialization: Opening and saving the configuration of FBs in Java Class file is one of the tasks  of  this  project.  As  soon  as  the  configuration  is  saved,  the  Java  code  of  FB  can  be generated. Java code is generated because compiled Java allows execution of FB. Saving in Java  Class  file  permits  portability,  i.e.  the  saved  configuration  can  be  opened  in  any  JVM system, and vice versa.      Case study: A simulation of an assembly station using an ABB IRB 140 robot is studied and implemented using the runtime simulator of the Java platform, in which some basic FBs have been also created in a library. This project also includes: (1) implementation of user interface and (2) FB serialization in XML. It  is  anticipated  that  the  developed  environment  will  be  able  to  save  and  open  FBs  configurations either in XML or in Java Class, following the specification of IEC 61499. It will allow portability and reusability.  Because  of  the  portability,  the  so-designed  FBs  can  be  validated  using  another  FB environment such as FBDK (Function Block Development Kit).

  • 6.
    Bentabol Muñoz, Emilio
    et al.
    University of Skövde, School of Engineering Science.
    Bosque Ibáñez, Carlos
    University of Skövde, School of Engineering Science.
    González Ruiz, Pedro
    University of Skövde, School of Engineering Science.
    Hurtado de Mendoza, Jose Manuel
    University of Skövde, School of Engineering Science.
    Ruiz Zúñiga, Enrique
    University of Skövde, School of Engineering Science.
    Linking Wise-ShopFloor to an ABB IRB-140 Robot: Remote control, monitoring, and programming of an ABB robot IRC 5 through the internet2010Independent thesis Basic level (degree of Bachelor), 15 credits / 22,5 HE creditsStudent thesis
    Abstract [en]

    The aim of this project is integrate the new robot IRB140 from ABB inside the application Wise ShopFloor (Web-based integrated sensor-driven e-ShopFloor) and the integration of a web camera inside the application as well. In order to integrate the ABB IRB140 inside the application, a Java 3D model has to be created, the kinematics and collision constrains have to be defined also and the GUI application modified to fit the virtual model and the camera inside the application. The user has to be able to jog the web camera and zoom it. Changes in the server side have been done in order to introduce new functionalities such as the sessions management, the communication mechanism now is more general using Java inheritance.

  • 7.
    Bermúdez Román, Abel
    et al.
    University of Skövde, School of Engineering Science.
    Gaztelumendi Arriaga, Javier
    University of Skövde, School of Engineering Science.
    Building and programming an autonomous robot using a Raspberry Pi as a PLC2016Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    PLC programming students are often limited to simulated systems or soft PLCs, because the high price of the hardware and the software licenses make it difficult for faculties to use real equipment for teaching. This paper describes the design and building of a PLC controlled self-balancing robot with CodeSys and Raspberry Pi as a low-cost demonstrator model that students can use as a base to interact with a real system. A first prototype has been developed, which can be used in the future to get students involved in beginner automation courses without having to build a system from scratch.

  • 8.
    Bi, Z.M.
    et al.
    Indiana University Purdue University Fort Wayne.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Dynamic control model of a cobot with three omni-wheels2010In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, Vol. 26, no 6, 558-563 p.Article in journal (Refereed)
    Abstract [en]

    In this paper, a new collaborative robot with omni-wheels has been proposed and its dynamic control has been developed and validated. Collaborative robots (Cobots) have been introduced to guide and assist human operators to move heavy objects in a given trajectory. Most of the existing cobots use steering wheels; typical drawbacks of using steering wheels include the difficulties to (i) follow a trajectory with a curvature larger than that of the base platform, (ii) mount encoders on steering wheels due to self-spinning of the wheels, and (iii) quarantine dynamic control performance since it is purely kinematic  control.  The  new  collaborative  robot  is  proposed  to  overcome  the  above-mentioned shortcomings. The methodologies for its dynamic control are focused and the simulation has been conducted to validate the control performance of the system.

  • 9.
    Billing, Erik
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    A New Look at Habits using Simulation Theory2017In: Proceedings of the Digitalisation for a Sustainable Society: Embodied, Embedded, Networked, Empowered through Information, Computation & Cognition, Göteborg, Sweden, 2017Conference paper (Refereed)
    Abstract [en]

    Habits as a form of behavior re-execution without explicit deliberation is discussed in terms of implicit anticipation, to be contrasted with explicit anticipation and mental simulation. Two hypotheses, addressing how habits and mental simulation may be implemented in the brain and to what degree they represent two modes brain function, are formulated. Arguments for and against the two hypotheses are discussed shortly, specifically addressing whether habits and mental simulation represent two distinct functions, or to what degree there may be intermediate forms of habit execution involving partial deliberation. A potential role of habits in memory consolidation is also hypnotized.

  • 10.
    Billing, Erik
    et al.
    Umeå universitet, Institutionen för datavetenskap.
    Hellström, Thomas
    Umeå universitet, Institutionen för datavetenskap.
    Janlert, Lars Erik
    Umeå universitet, Institutionen för datavetenskap.
    Simultaneous control and recognition of demonstrated behavior2011Report (Other academic)
    Abstract [en]

    A method for Learning from Demonstration (LFD) is presented and evaluated on a simulated Robosoft Kompai robot. The presented algorithm, called Predictive Sequence Learning (PSL), builds fuzzy rules describing temporal relations between sensory-motor events recorded while a human operator is tele-operating the robot. The generated rule base can be used to control the robot and to predict expected sensor events in response to executed actions. The rule base can be trained under different contexts, represented as fuzzy sets. In the present work, contexts are used to represent different behaviors. Several behaviors can in this way be stored in the same rule base and partly share information. The context that best matches present circumstances can be identified using the predictive model and the robot can in this way automatically identify the most suitable behavior for precent circumstances. The performance of PSL as a method for LFD is evaluated with, and without, contextual information. The results indicate that PSL without contexts can learn and reproduce simple behaviors. The system also successfully identifies the most suitable context in almost all test cases. The robot's ability to reproduce more complex behaviors, with partly overlapping and conflicting information, significantly increases with the use of contexts. The results support a further development of PSL as a component of a dynamic hierarchical system performing control and predictions on several levels of abstraction. 

  • 11.
    Billing, Erik
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Hellström, Thomas
    Institutionen för Datavetenskap, Umeå Universitet.
    Janlert, Lars-Erik
    Institutionen för Datavetenskap, Umeå Universitet.
    Simultaneous recognition and reproduction of demonstrated behavior2015In: Biologically Inspired Cognitive Architectures, ISSN 2212-683X, Vol. 12, 43-53 p., BICA114Article in journal (Refereed)
    Abstract [en]

    Predictions of sensory-motor interactions with the world is often referred to as a key component in cognition. We here demonstrate that prediction of sensory-motor events, i.e., relationships between percepts and actions, is sufficient to learn navigation skills for a robot navigating in an apartment environment. In the evaluated application, the simulated Robosoft Kompai robot learns from human demonstrations. The system builds fuzzy rules describing temporal relations between sensory-motor events recorded while a human operator is tele-operating the robot. With this architecture, referred to as Predictive Sequence Learning (PSL), learned associations can be used to control the robot and to predict expected sensor events in response to executed actions. The predictive component of PSL is used in two ways: 1) to identify which behavior that best matches current context and 2) to decide when to learn, i.e., update the confidence of different sensory-motor associations. Using this approach, knowledge interference due to over-fitting of an increasingly complex world model can be avoided. The system can also automatically estimate the confidence in the currently executed behavior and decide when to switch to an alternate behavior. The performance of PSL as a method for learning from demonstration is evaluated with, and without, contextual information. The results indicate that PSL without contextual information can learn and reproduce simple behaviors, but fails when the behavioral repertoire becomes more diverse. When a contextual layer is added, PSL successfully identifies the most suitable behavior in almost all test cases. The robot's ability to reproduce more complex behaviors, with partly overlapping and conflicting information, significantly increases with the use of contextual information. The results support a further development of PSL as a component of a dynamic hierarchical system performing control and predictions on several levels of abstraction. 

  • 12.
    Billing, Erik
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. Department of Applied IT, University of Gothenburg, Sweden.
    Sandamirskaya, Yulia
    Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland.
    Simultaneous Planning and Action: Neural-dynamic Sequencing of Elementary Behaviors in Robot Navigation2015In: Adaptive Behavior, ISSN 1059-7123, E-ISSN 1741-2633, Vol. 23, no 5, 243-264 p.Article in journal (Refereed)
    Abstract [en]

    A technique for Simultaneous Planning and Action (SPA) based on Dynamic Field Theory (DFT) is presented. The model builds on previous workon representation of sequential behavior as attractors in dynamic neural fields. Here, we demonstrate how chains of competing attractors can be used to represent dynamic plans towards a goal state. The presentwork can be seen as an addition to a growing body of work that demonstratesthe role of DFT as a bridge between low-level reactive approachesand high-level symbol processing mechanisms. The architecture is evaluatedon a set of planning problems using a simulated e-puck robot, including analysis of the system's behavior in response to noise and temporary blockages ofthe planned route. The system makes no explicit distinction betweenplanning and execution phases, allowing continuous adaptation of the planned path. The proposed architecture exploits the DFT property of stability in relation to noise and changes in the environment. The neural dynamics are also exploited such that stay-or-switch action selection emerges where blockage of a planned path occurs: stay until the transient blockage is removed versus switch to an alternative route to the goal.

  • 13.
    Boberg, Arvid
    University of Skövde, School of Engineering Science.
    Virtual lead-through robot programming: Programming virtual robot by demonstration2015Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This report describes the development of an application which allows a user to program a robot in a virtual environment by the use of hand motions and gestures. The application is inspired by the use of robot lead-through programming which is an easy and hands-on approach for programming robots, but instead of performing it online which creates loss in productivity the strength from offline programming where the user operates in a virtual environment is used as well. Thus, this is a method which saves on the economy and prevents contamination of the environment. To convey hand gesture information into the application which will be implemented for RobotStudio, a Kinect sensor is used for entering the data into the virtual environment. Similar work has been performed before where, by using hand movements, a physical robot’s movement can be manipulated, but for virtual robots not so much. The results could simplify the process of programming robots and supports the work towards Human-Robot Collaboration as it allows people to interact and communicate with robots, a major focus of this work. The application was developed in the programming language C# and has two different functions that interact with each other, one for the Kinect and its tracking and the other for installing the application in RobotStudio and implementing the calculated data into the robot. The Kinect’s functionality is utilized through three simple hand gestures to jog and create targets for the robot: open, closed and “lasso”. A prototype of this application was completed which through motions allowed the user to teach a virtual robot desired tasks by moving it to different positions and saving them by doing hand gestures. The prototype could be applied to both one-armed robots as well as to a two-armed robot such as ABB’s YuMi. The robot's orientation while running was too complicated to be developed and implemented in time and became the application's main bottleneck, but remained as one of several other suggestions for further work in this project.

  • 14.
    Danielsson, Oscar
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Syberfeldt, Anna
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Brewster, Rodney
    Volvo Car Corporation, Skövde, Sweden.
    Wang, Lihui
    KTH Royal Institute of Technology, Kungliga Tekniska högskolan, Stockholm.
    Assessing Instructions in Augmented Reality for Human-Robot Collaborative Assembly by Using Demonstrators2017In: Manufacturing Systems 4.0 - Proceedings of the 50th CIRP Conference on Manufacturing Systems / [ed] Mitchell M. Tseng, Hung-Yin Tsai, Yue Wang, Elsevier, 2017, Vol. 63, 89-94 p.Conference paper (Refereed)
    Abstract [en]

    Robots are becoming more adaptive and aware of their surroundings. This has opened up the research area of tight human-robot collaboration,where humans and robots work directly interconnected rather than in separate cells. The manufacturing industry is in constant need ofdeveloping new products. This means that operators are in constant need of learning new ways of manufacturing. If instructions to operatorsand interaction between operators and robots can be virtualized this has the potential of being more modifiable and available to the operators.Augmented Reality has previously shown to be effective in giving operators instructions in assembly, but there are still knowledge gapsregarding evaluation and general design guidelines. This paper has two aims. Firstly it aims to assess if demonstrators can be used to simulatehuman-robot collaboration. Secondly it aims to assess if Augmented Reality-based interfaces can be used to guide test-persons through apreviously unknown assembly procedure. The long-term goal of the demonstrator is to function as a test-module for how to efficiently instructoperators collaborating with a robot. Pilot-tests have shown that Augmented Reality instructions can give enough information for untrainedworkers to perform simple assembly-tasks where parts of the steps are done with direct collaboration with a robot. Misunderstandings of theinstructions from the test-persons led to multiple errors during assembly so future research is needed in how to efficiently design instructions.

  • 15.
    Deb, Kalyanmoy
    et al.
    Department of Electrical and Computer Engineering, Michigan State University, USA.
    Siegmund, Florian
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    R-HV: A Metric for Computing Hyper-volume for Reference Point-based EMOs2015In: Swarm, Evolutionary, and Memetic Computing: 5th International Conference, SEMCCO 2014, Bhubaneswar, India, December 18-20, 2014, Revised Selected Papers / [ed] Bijaya Ketan Panigrahi, Ponnuthurai Nagaratnam Suganthan & Swagatam Das, Springer, 2015, 98-110 p.Chapter in book (Refereed)
    Abstract [en]

    For evaluating performance of a multi-objective optimizationfor finding the entire efficient front, a number of metrics, such as hypervolume, inverse generational distance, etc. exists. However, for evaluatingan EMO algorithm for finding a subset of the efficient frontier, the existing metrics are inadequate. There does not exist many performancemetrics for evaluating a partial preferred efficient set. In this paper, wesuggest a metric which can be used for such purposes for both attainableand unattainable reference points. Results on a number of two-objectiveproblems reveal its working principle and its importance in assessingdifferent algorithms. The results are promising and encouraging for itsfurther use.

  • 16.
    Egaña Iztueta, Lander
    et al.
    University of Skövde, School of Engineering Science.
    Roda Martínez, Javier
    University of Skövde, School of Engineering Science.
    Function Block Algorithms for Adaptive Robotic Control2014Independent thesis Basic level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The purpose of this project is the creation of an adaptive Function Block control system, and the implementation of Artificial Intelligence integrated within the Function Block control system, using IEC 61499 standard to control an ABB 6-axis virtual robot, simulated in the software RobotStudio. To develop these objectives, we studied a lot of necessary concepts and how to use three different softwares. To learn how to use the softwares, some tests were carried out. RobotStudio is a program developed by ABB Robotics Company where an ABB robot and a station are simulated. There, we designed and created a virtual assembly cell with the virtual IRB140 robot and the necessary pieces to simulate the system. To control the robot and the direct access to the different tools of RobotStudio, it is necessary to use an application programming interface (API) developed by ABB Robotics Company. C sharp (C#) language is used to program using the API, but this language is not supported by the Function Block programming software nxtStudio. Because of this, we used VisualStudio software. In this software, we use the API libraries to start and stop the robot and load a RAPID file in the controller. In a RAPID file the instructions that the robot must follow are written. So, we had to learn about how to program in C# language and how to use VisualStudio software. Also, to learn about IEC 61499 standard it was necessary to read some books. This standard determines how an application should be programmed through function blocks. A function block is a unit of program with a certain functionality which contains data and variables that can be manipulated in the same function block by several algorithms. To program in this standard we learnt how to use nxtStudio software, consuming a lot of time because the program is quite complex and it is not much used in the industrial world yet. Some tests were performed to learn different programing skills in this standard, such as how to use UDP communication protocol and how to program interfaces. Learning UDP communication was really useful because it is necessary for communication between nxtStudio and other programs, and also learning how to use interfaces to let the user access the program. Once we had learnt about how to use and program the different softwares and languages, we began to program the project. Then, we had some troubles with nxtStudio because strings longer than fourteen characters cannot be used here. So, a motion alarm was developed in VisualStudio program. And another important limitation of nxtStudio is that C++ language cannot be used. Therefore, the creation of an Artificial Intelligence system was not possible. So, we created a Function Block control system. This system is a logistical system realised through loops, conditions and counters. All this makes the robot more adaptive. As the AI could not be carried out because of the different limitations, we theoretically designed the AI system. It will be possible to implement the AI when the limitations and the problems are solved.

  • 17.
    Einevik, Johan
    et al.
    University of Skövde, School of Engineering Science.
    Kurri, John
    University of Skövde, School of Engineering Science.
    Emulering av en produktioncell med Visionguidning: Virtuell idrifttagning2017Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Using a virtual twin of a production cell, makes it possible for programming and different functional testing of panels to be performed in early stages of development. A virtual twin contributes to a simpler debugging and to identify problems and minimize cost in commissioning of the production cell. The aim for the project is to investigate how well an emulated cell will perform compared to the real production cell in a factory acceptance test. Another objective is to investigate how you can use real CAD models in the emulation and what type of criteria the models should meet. The project had a lot of challenges and one of them was the difficulty to emulate the safety systems. This was solved by bypassing the safety in the PLC program. One important thing about emulation is communication between the different software used in the system. In this project, it proved successful to distribute the software on three computers to ease the workload of the programs used in the emulation. To use the emulated model instead of the real system is still in the research phase but in this project a lot of useful applications could be identified that could change commissioning in the future.

  • 18.
    Ericson, Stefan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Vision-Based Perception for Localization of Autonomous Agricultural Robots2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis Stefan investigates how cameras can be used for localization of an agricultural mobile robot. He focuses on relative measurement that can be used to determine where a weeding tool is operating relative a weed detection sensor. It incorporates downward-facing perspective cameras, forward-facing perspective cameras and omnidirectional cameras. Stefan shows how the camera’s ego-motion can be estimated to obtain not only the position in 3D but also the orientation. He also shows how line structures in the field can be used to navigate a robot along the rows.

  • 19.
    Gustavsson, Patrik
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Using Speech Recognition, Haptic Control and Augmented Reality to enable Human-Robot Collaboration in Assembly Manufacturing: Research Proposal2016Report (Other academic)
    Abstract [en]

    In recent years robots have become more adaptive and aware of the surroundings which enables them for use in human-robot collaboration. By introducing robots into the same working cell as the human, then the two can collaborate by letting the robot deal with heavy lifting, repetitive and high accuracy tasks while the human focuses on tasks that needs the flexibility of the human. Collaborative robots already exists today in the market but the usage of these robots are mainly to work in close proximity.

    Usually a teaching pendant is used to program a robot by moving it using a joystick or buttons. Using this teaching pendant for programming is usually quite slow and requires training which means that few can operate it. However, recent research shows that there exist several application using multi-modal communication systems to improve the programming of a robot. This kind of programming will be necessary to collaborate with a robot in the industry since the human in a collaborative task might have to teach the robot how to execute its task.

    This project aims to introduce a programming-by-guidance system into assembly manufacturing where the human can assist the robot by teaching the robot how to execute its task. Three technologies will be combined, speech recognition, haptic control, and augmented reality. The hypothesis is that with these three technologies an effective and intuitive programming-by-guidance system can be used within the assembly manufacturing industry. This project have three main motivators: Allowing workers, with no robot programming expertise, to teach the robot how to execute its task in an assembly manufacturing system; Reducing the development time of the robot by introducing advanced programming-by-guidance technology; Showing that augmented reality can add additional information that is useful when programming the robot.

  • 20.
    Gustavsson, Patrik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Syberfeldt, Anna
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Brewster, Rodney
    Volvo Car Corporation, Skövde, Sweden.
    Wang, Lihui
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Human-Robot Collaboration Demonstrator Combining Speech Recognition and Haptic Control2017In: Manufacturing Systems 4.0 - Proceedings of the 50th CIRP Conference on Manufacturing Systems / [ed] Mitchell M. Tseng, Hung-Yin Tsai, Yue Wang, 2017, Vol. 63, 396-401 p.Conference paper (Refereed)
    Abstract [en]

    In recent years human-robot collaboration has been an important topic in manufacturing industries. By introducing robots into the same working cell as humans, the advantages of both humans and robots can be utilized. A robot can handle heavy lifting, repetitive and high accuracy tasks while a human can handle tasks that require the flexibility of humans. If a worker is to collaborate with a robot it is important to have an intuitive way of communicating with the robot. Currently, the way of interacting with a robot is through a teaching pendant, where the robot is controlled using buttons or a joystick. However, speech and touch are two communication methods natural to humans, where speech recognition and haptic control technologies can be used to interpret these communication methods. These technologies have been heavily researched in several research areas, including human-robot interaction. However, research of combining these two technologies to achieve a more natural communication in industrial human-robot collaboration is limited. A demonstrator has thus been developed which includes both speech recognition and haptic control technologies to control a collaborative robot from Universal Robots. This demonstrator will function as an experimental platform to further research on how the speech recognition and haptic control can be used in human-robot collaboration. The demonstrator has proven that the two technologies can be integrated with a collaborative industrial robot, where the human and the robot collaborate to assemble a simple car model. The demonstrator has been used in public appearances and a pilot study, which have contributed in further improvements of the demonstrator. Further research will focus on making the communication more intuitive for the human and the demonstrator will be used as the platform for continued research.

  • 21.
    Hedenberg, Klas
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Åstrand, Bjorn
    School of Information Technology, Halmstad University, Halmstad, Sweden.
    3D Sensors on Driverless Trucks for Detection of Overhanging Objects in the Pathway2016In: Autonomous Industrial Vehicles: From the Laboratory to the Factory Floor / [ed] Roger Bostelman, Elena Messina, West Conshohocken, PA: ASTM International, 2016, 41-56 p.Chapter in book (Refereed)
    Abstract [en]

    Human-operated and driverless trucks often collaborate in a mixed work space in industries and warehouses. This is more efficient and flexible than using only one kind of truck. However, because driverless trucks need to give way to driven trucks, a reliable detection system is required. Several challenges exist in the development of such a system. The first is to select interesting situations and objects. Overhanging objects are often found in industrial environments (e.g., tines on a forklift). Second is choosing a system that has the ability to detect those situations. (The traditional laser scanner situated two decimetres above the floor does not detect overhanging objects.) Third is to ensure that the perception system is reliable. A solution used on trucks today is to mount a two-dimensional laser scanner on top and tilt the scanner toward the floor. However, objects at the top of the truck will be detected too late, and a collision cannot always be avoided. Our aim is to replace the upper two-dimensional laser scanner with a three-dimensional camera, structural light, or time-of-flight (TOF) camera. It is important to maximize the field of view in the desired detection volume. Hence, the sensor placement is important. We conducted laboratory experiments to check and compare the various sensors' capabilities for different colors, using tines and a model of a tine in a controlled industrial environment. We also conducted field experiments in a warehouse. Our conclusion is that both the tested structural light and TOF sensors have problems detecting black items that are non-perpendicular to the sensor. It is important to optimize the light economy—meaning the illumination power, field of view, and exposure time—in order to detect as many different objects as possible.

  • 22.
    Holm, Magnus
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Givehchi, Mohammad
    University of Skövde.
    Mohammed, Abdullah
    University of Skövde.
    Wang, Lihui
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Web based monitoring and control of distant Robotic Operations2012In: Proceedings of the ASME 2012 International Manufacturing Science and Engineering Conference MSEC2012 June 4-8, 2012, Notre Dame, Indiana, USA, ASME Press, 2012, 605-612 p.Conference paper (Refereed)
    Abstract [en]

    In order to improve the production efficiency while facing today’s manufacturing uncertainty, responsive and adaptive capabilities for rapid production changes are essential. This paper presents how dynamic control and real-time monitoring (embedded in a web-based Wise-ShopFloor framework) can integrate virtual models with real shop floors. Wise-ShopFloor (Web-based integrated sensor-driven e-ShopFloor)uses Java technologies (e.g., Java Servlet and Java3D) for implementing the system. It allows the operators, both remote and on-site, to monitor and control machines, devices and operations on a shop floor, based on run-time information from the connected machines, devices and their sensors. Two case studies are presented to demonstrate the approach towards web-based adaptive manufacturing. The first demonstrating how OPC-technology is used to improve the monitoring and control capabilities of the production and the second one focusing  on remote control of a robot eliminating the need of motion planning and tedious robot programming.

  • 23.
    Johansson, Daniel
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik / Centre for Applied Autonomous Sensor Systems (AASS), Örebro university,Sweden.
    de Vin, Leo J.
    University of Skövde, School of Technology and Society.
    Design and development of an augmented environment with high user mobility for training purposes2008In: Proceedings of the 11th Mechatronics Forum Biennial International Conference: 23 – 25 June2008, Universith of Limerick, Ireland / [ed] Toal, D., Limerick: University of Limerick , 2008Conference paper (Refereed)
    Abstract [en]

    The paper describes the design and development of a novel cost effective simulator for training of situation awareness, strategy and co-operation. By mixing real and virtual realities in combination with wireless and body-mounted hardware, the result is an augmented environment that allows for high physical mobility against a relatively low cost.

  • 24.
    Johansson, Marcus
    et al.
    University of Skövde, School of Engineering Science.
    Nilsson, Jacob
    University of Skövde, School of Engineering Science.
    Virtuell driftsättning: Verifiering av PLC logik mot simuleringsprogram2015Independent thesis Basic level (university diploma), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    To shorten project lead times Volvo Cars Skövde decided to explore the possibilities regarding verifi-cation of PLC-logic in simulation programs. The overall objective of the thesis was to analyze the pos-sibilities for establishing communication between the flow simulation program Plant Simulation and a PLC-device. A thorough understanding of the area virtual commissioning was obtained by writing the frame of reference and a literature review which served as basis for the continued practical work. Through a collection of interviews, discussions and an extensive literature review a better under-standing regarding how the communication between the different programs works, along with im-portant points that should be considered under a virtual commissioning project was obtained. A hy-pothetical system was developed in Plant Simulation by Volvo Cars Skövde to be used as a test sys-tem. The Simumatik3D model was created by emulating the Plant Simulation model and at the same time developing the PLC-logic in Siemens Step 7. During the development progress subsystems were verified in Simumatik3D against the created PLC-logic until the model was fully developed. To make sure that both the Simumatik3D model and the Plant Simulation model was valid a number of valida-tion points were tested. After the validation test the experimental phase started were different sce-narios were analyzed and tested to bring up any problems in the models to the surface. A thorough evaluation is presented in which the entire construction phase of the models is evaluated in terms of time required, advantages and disadvantages and communication with the PLC-device. The two pro-grams Simumatik3D and Plant Simulation was evaluated against one another in order to find out which program that is the most suited for virtual verification of PLC-logic. An overall methodology was developed based on the evaluation carried out and the experience gained from the implementa-tion of the work. The result from the developed methodology is presented which describes the parti-tion between the client and supplier, the communication between them and a visualization of the methodology-process. The result from the evaluation showed that Simumatik3D was more suitable for verification of PLC logic on a detailed level. The evaluation also showed that the PLC logic could be verified with Plant Simulation, but not on the same detailed level. Plant Simulation was more suit-able for making simulation models more realistic. Virtual commissioning of PLC-logic is a new con-cept on Volvo Cars Skövde and therefore can the result from this thesis form a basis for future work in this area. Virtual verification of PLC-logic is discussed in which several important aspects to think about is presented. The projects main goal to virtually verify PLC-logic in simulation programs was achieved and yielded good results, the partial objectives resulted in a thorough evaluation and future recommendations.

  • 25.
    Lidberg, Simon
    University of Skövde, School of Technology and Society.
    Evolving Cuckoo Search: From single-objective to multi-objective2011Independent thesis Advanced level (degree of Master (One Year)), 15 credits / 22,5 HE creditsStudent thesis
    Abstract [en]

    This thesis aims to produce a novel multi-objective algorithm that is based on Cuckoo Search by Dr. Xin-She Yang. Cuckoo Search is a promising nature-inspired meta-heuristic optimization algorithm, which currently is only able to solve single-objective optimization problems. After an introduction, a number of theoretical points are presented as a basis for the decision of which algorithms to hybridize Cuckoo Search with. These are then reviewed in detail and verified against current benchmark algorithms to evaluate their efficiency.

    To test the proposed algorithm in a new setting, a real-world combinatorial problem is used. The proposed algorithm is then used as an optimization engine for a simulation-based system and compared against a current implementation. 

  • 26.
    Mohammed, Abdullah
    et al.
    Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Schmidt, Bernard
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Active collision avoidance for human-robot collaboration driven by vision sensors2017In: International journal of computer integrated manufacturing (Print), ISSN 0951-192X, E-ISSN 1362-3052, Vol. 30, no 9, 970-980 p.Article in journal (Refereed)
    Abstract [en]

    Establishing safe human-robot collaboration is an essential factor for improving efficiency and flexibility in today's manufacturing environment. Targeting safety in human-robot collaboration, this paper reports a novel approach for effective online collision avoidance in an augmented environment, where virtual three-dimensional (3D) models of robots and real images of human operators from depth cameras are used for monitoring and collision detection. A prototype system is developed and linked to industrial robot controllers for adaptive robot control, without the need of programming by the operators. The result of collision detection reveals four safety strategies: the system can alert an operator, stop a robot, move away the robot, or modify the robot's trajectory away from an approaching operator. These strategies can be activated based on the operator's existence and location with respect to the robot. The case study of the research further discusses the possibility of implementing the developed method in realistic applications, for example, collaboration between robots and humans in an assembly line.

  • 27.
    Mohammed, Abdullah
    et al.
    Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Schmidt, Bernard
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    Department of Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Energy-Efficient Robot Configuration for Assembly2017In: Journal of manufacturing science and engineering, ISSN 1087-1357, E-ISSN 1528-8935, Vol. 139, no 5, 051007Article in journal (Refereed)
    Abstract [en]

    Optimizing the energy consumption of robot movements has been one of the main focuses for most of today's robotic simulation software. This optimization is based on minimizing a robot's joint movements. In many cases, it does not take into consideration the dynamic features. Therefore, reducing energy consumption is still a challenging task and it involves studying the robot's kinematic and dynamic models together with application requirements. This research aims to minimize the robot energy consumption during assembly. Given a trajectory and based on the inverse kinematics and dynamics of a robot, a set of attainable configurations for the robot can be determined, perused by calculating the suitable forces and torques on the joints and links of the robot. The energy consumption is then calculated for each configuration and based on the assigned trajectory. The ones with the lowest energy consumption are selected. Given that the energy-efficient robot configurations lead to reduced overall energy consumption, this approach becomes instrumental and can be embedded in energy-efficient robotic assembly.

  • 28.
    Mohammed, Abdullah
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Schmidt, Bernard
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Remote monitoring and controlling for robotic path following operations2012In: Proceedings of the SPS12 conference 2012, The Swedish Production Academy , 2012, 27-33 p.Conference paper (Refereed)
    Abstract [en]

    Controlling a robot's movement requires a prior knowledge about the needed path and configurations to accomplish the movement. The lack of this knowledge causes limitations in the robot's adaptability in dynamic environments. The objectives of this paper are: (1) to improve the ability of the robot to follow any arbitrary path defined by an operator, and (2) to provide the ability for an authorized distant operator to access the system for monitoring and controlling both the robot and the stages of the process. The system developed in this research consists of a calibrated network camera, an industrial robot and an application server. The process starts by having a sketch drown by an operator representing the paths that the robot needs to follow, then the operator can remotely take a snapshot of the paths and retrieve the contours that represent the paths; after that the system sends them to the robot controller to perform the task of path following. The results have shown that the system can perform the required task within a relatively short time and with a reasonable level of quality. This research proves that it is possible to build an adaptive robotic system that can follow efficiently any arbitrary path without the need for defining it in advance.

  • 29.
    Montebelli, Alberto
    et al.
    University of Skövde, The Informatics Research Centre. University of Skövde, School of Informatics. Department of Automation and Systems Technology, Aalto University, Finland.
    Kyrki, Ville
    Department of Automation and Systems Technology, Aalto University, Finland.
    Transferring Physical Skills From Humans to Robots: Multimodal Programming by Demonstration for In-Contact Tasks2013Conference paper (Refereed)
  • 30.
    Montebelli, Alberto
    et al.
    Department of Electrical Engineering and Automation, Aalto Univeristy, Finland.
    Steinmetz, Franz
    German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen-Weßling, Germany.
    Kyrki, Ville
    Department of Electrical Engineering and Automation, Aalto Univeristy, Finland.
    On handing down our tools to robots: Single-phase kinesthetic teaching for dynamic in-contact tasks2015In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation: ICRA 2015, IEEE conference proceedings, 2015, 5628-5634 p.Conference paper (Refereed)
    Abstract [en]

    We present a (generalizable) method aimed tosimultaneously transfer positional and force requirements en-coded in a physical human skill (wood planing) from a humaninstructor to a robotic arm through kinesthetic teaching. Weachieve our goal through a novel use of a common sensoryconfiguration, constituted by a force/torque sensor mountedbetween the tool and the flange of a robotic arm. The roboticarm is endowed with integrated torque sensors at each joint.The mathematical model used to capture the general dynamicof the interaction between the human user and the wood surfaceis based on Dynamic Movement Primitives. During reenactmentof the task, the system can imitate and generalize the demon-strated spatial requirements, as well as their associated forceprofiles. Therefore, the robotic arm acquires the capacity toreproduce the dynamic profile for in-contact tasks requiringan articulated coordination in the distribution of forces. Forexample, the capacity to effectively operate the plane on a woodplank over multiple strokes, according to the demonstration ofthe human instructor.

  • 31.
    Montebelli, Alberto
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Tykal, Martin
    Aalto University, Finland.
    Intention Disambiguation: When does action reveal its underlying intention?2017Conference paper (Refereed)
  • 32.
    Nordby, Johan
    et al.
    University of Skövde, School of Engineering Science.
    Tholin, Mikael
    University of Skövde, School of Engineering Science.
    TIDSSTUDIEANALYS AV MANUELL PRODUKTHANTERING VID I- OCH URLASTNING I PRODUKTIONSUTRUSTNINGAR: Produktionssystemutveckling enligt Chaku-Chaku/Hanedashi-principen2013Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The project is located at Autoliv Sverige AB (Autoliv) in Vårgårda. Autoliv wants to improve the handle of material in the processes by increasing the availability of the machines. Material is alternately handled by man and machine. The mission is to make one or more concrete that uses the production technique Chaku-Chaku, also known as Hanedashi, as well as being a solution efficient regarding both cost and time and to make use of already existing production equipment.The project is narrowed to just include the top three production cells that demands the most production (operator) time as well as one newly created cell.To be able to calculate the time efficiency on the processes we made a time study and with the analysis of the study we could determine important values of the production for later savings calculations. Four suggestions of improvements were developed and analyzed for time efficiency. Three out of these four were handpicked to be calculated for cost and cost savings of the maximum capacity of the new production or if the yearly production stayed the same. The requirement was that the new maximized production would increase the yearly production by 7%.The first of the handpicked suggestions was to preassemble a component on a separate table instead of assemble it inside of a machine, for this was regarded as a problematic procedure. The solution also contained a new schedule of movements for the operators and a new production cell layout. The second suggestion of improvement aim that when the module has been in one of the assembly machines it will automatically be ejected and therefor made available for the next module. The first and second solutions are recommended to be combined as these can be a complement for each other, as these suggestions are on the same production cell. The third solution was to implement a grasping device that moved aside the module a bit to be processed manually. Thus would make it possible for the next module to be placed inside the machine at the same time. This solution would make two separate waiting times into one synchronized processing. The suggestions of improvements were calculated to result in saved labour if production stayed the same. If the production were maximized the calculations showed the point of break-even. The suggestions would pay-off after 700 units were manufactured on each production cell and further increase the capacity with more than 7%.

  • 33.
    Racca, Mattia
    et al.
    School of Electrical Engineering, Aalto University, Finland.
    Pajarinen, Joni
    Intelligent Autonomous Systems (IAS) and Computational Learning for Autonomous Systems (CLAS) labs at TU Darmstadt.
    Montebelli, Alberto
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Kyrki, Ville
    School of Electrical Engineering, Aalto University, Finland.
    Learning in-contact control strategies from demonstration2016In: IROS 2016: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2016, 688-695 p.Conference paper (Refereed)
    Abstract [en]

    Learning to perform tasks like pulling a door handle or pushing a button, inherently easy for a human, can be surprisingly difficult for a robot. A crucial problem in these kinds of in-contact tasks is the context specificity of pose and force requirements. In this paper, a robot learns in-contact tasks from human kinesthetic demonstrations. To address the need to balance between the position and force constraints, we propose a model based on the hidden semi-Markov model (HSMM) and Cartesian impedance control. The model captures uncertainty over time and space and allows the robot to smoothly satisfy a task's position and force constraints by online modulation of impedance controller stiffness according to the HSMM state belief. In experiments, a KUKA LWR 4+ robotic arm equipped with a force/torque sensor at the wrist successfully learns from human demonstrations how to pull a door handle and push a button.

  • 34.
    Raupach, Staffan
    et al.
    University of Skövde, School of Engineering Science.
    Lindelöw, Fredrik
    University of Skövde, School of Engineering Science.
    Virtual Value Stream Mapping: Evaluation of simulation based value stream mapping using Plant Simulation2015Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    VSM, Value stream mapping, V2SM, virtual value stream mapping, lean, lean manufacturing, DES, discrete event simulation, Tecnomatix Plant Simulation

  • 35.
    Schmidt, Bernard
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Active collision avoidance for human-robot collaborative manufacturing2012In: Proceedings of the SPS12 conference 2012, The Swedish Production Academy , 2012, 81-86 p.Conference paper (Refereed)
    Abstract [en]

    In the human-robot collaborative manufacturing environment where humans and robots coexist, safety protection of human operators in real time is of paramount importance. This paper presents an approach for real-time active collision avoidance in augmented environment, where virtual 3D models of robots and real camera images of operators are used for monitoring and collision detection. A cost-effective depth camera is chosen for surveillance of any mobile foreign objects, including operators, which are not presented in the virtual 3D models. Two redundant Kinect sensors using structured light are used as the depth cameras for better area coverage and for eliminating possible blind spots in the surveillance area. Collision detection is performed by minumum distance. Processing applied on depth images includes background removal, filtering, labeling and points cloud generation. A prototype system is developed and linked to robot controllers for real-time robot control, with zero robot programming. According to the result of collision detection, it can alert an operator, stop a robot, or even move a robot away from an approaching operator. The results of a case study show that this approach can be applied to real-world applications such as human-robot collaborative assembly to safeguard human operators.

  • 36.
    Siegmund, Florian
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Dynamic Resampling for Preference-based Evolutionary Multi-objective Optimization of Stochastic Systems: Improving the efficiency of time-constrained optimization2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In preference-based Evolutionary Multi-objective Optimization (EMO), the decision maker is looking for a diverse, but locally focused non-dominated front in a preferred area of the objective space, as close as possible to the true Pareto-front. Since solutions found outside the area of interest are considered less important or even irrelevant, the optimization can focus its efforts on the preferred area and find the solutions that the decision maker is looking for more quickly, i.e., with fewer simulation runs. This is particularly important if the available time for optimization is limited, as is the case in many real-world applications. Although previous studies in using this kind of guided-search with preference information, for example, withthe R-NSGA-II algorithm, have shown positive results, only very few of them considered the stochastic outputs of simulated systems.

    In the literature, this phenomenon of stochastic evaluation functions is sometimes called noisy optimization. If an EMO algorithm is run without any countermeasure to noisy evaluation functions, the performance will deteriorate, compared to the case if the true mean objective values are known. While, in general, static resampling of solutions to reduce the uncertainty of all evaluated design solutions can allow EMO algorithms to avoid this problem, it will significantly increase the required simulation time/budget, as many samples will be wasted on candidate solutions which are inferior. In comparison, a Dynamic Resampling (DR) strategy can allow the exploration and exploitation trade-off to be optimized, since the required accuracy about objective values varies between solutions. In a dense, converged population, itis important to know the accurate objective values, whereas noisy objective values are less harmful when an algorithm is exploring the objective space, especially early in the optimization process. Therefore, a well-designed Dynamic Resampling strategy which resamples the solution carefully, according to the resampling need, can help an EMO algorithm achieve better results than a static resampling allocation.

    While there are abundant studies in Simulation-based Optimization that considered Dynamic Resampling, the survey done in this study has found that there is no related work that considered how combinations of Dynamic Resampling and preference-based guided search can further enhance the performance of EMO algorithms, especially if the problems under study involve computationally expensive evaluations, like production systems simulation. The aim of this thesis is therefore to study, design and then to compare new combinations of preference-based EMO algorithms with various DR strategies, in order to improve the solution quality found by simulation-based multi-objective optimization with stochastic outputs, under a limited function evaluation or simulation budget. Specifically, based on the advantages and flexibility offered by interactive, reference point-based approaches, studies of the performance enhancements of R-NSGA-II when augmented with various DR strategies, with increasing degrees of statistical sophistication, as well as several adaptive features in terms of optimization parameters, have been made. The research results have clearly shown that optimization results can be improved, if a hybrid DR strategy is used and adaptive algorithm parameters are chosen according to the noise level and problem complexity. In the case of a limited simulation budget, the results allow the conclusions that both decision maker preferences and DR should be used at the same time to achieve the best results in simulation-based multi-objective optimization.

  • 37.
    Siegmund, Florian
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Deb, Kalyanmoy
    Department of Electrical and Computer Engineering, Michigan State University, USA.
    Karlsson, Alexander
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Dynamic Resampling for Guided Evolutionary Multi-Objective Optimization of Stochastic Systems2013Conference paper (Refereed)
    Abstract [en]

    In Multi-objective Optimization many solutions have to be evaluated in order to provide the decision maker with a diverse Pareto-front. In Simulation-based Optimization the number of optimization function evaluations is very limited. If preference information is available however, the available function evaluations can be used more effectively by guiding the optimization towards interesting, preferred regions. One such algorithm for guided search is the R-NSGA-II algorithm. It takes reference points provided by the decision maker and guides the optimization towards areas of the Pareto-front close to the reference points.In Simulation-based Optimization the modeled systems are often stochastic and a reliable quality assessment of system configurations by resampling requires many simulation runs. Therefore optimization practitioners make use of dynamic resampling algorithms that distribute the available function evaluations intelligently on the solutions to be evaluated. Criteria for sampling allocation can be a.o. objective value variability, closeness to the Pareto-front indicated by elapsed time, or the dominance relations between different solutions based on distances between objective vectors and their variability.In our work we combine R-NSGA-II with several resampling algorithms based on the above mentioned criteria. Due to the preference information R-NSGA-II has fitness information based on distance to reference points at its disposal. We propose a resampling strategy that allocates more samples to solutions close to a reference point.Previously, we proposed extensions of R-NSGA-II that adapt algorithm parameters like population size, population diversity, or the strength of the Pareto-dominance relation continuously to optimization problem characteristics. We show how resampling algorithms can be integrated with those extensions.The applicability of the proposed algorithms is shown in a case study of an industrial production line for car manufacturing.

  • 38.
    Siegmund, Florian
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Deb, Kalyanmoy
    Department of Electrical and Computer Engineering, Michigan State University, USA.
    Ng, Amos H. C.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Adaptive Guided Evolutionary Multi-Objective Optimization2013Conference paper (Refereed)
    Abstract [en]

    In Multi-objective Optimization many solutions have to be evaluated in order to provide the decision maker with a diverse Pareto-front. In Simulation-based Optimization the number of optimization function evaluations is very limited. If preference information is available however, the available function evaluations can be used more effectively by guiding the optimization towards interesting, preferred regions. One such algorithm for guided search is the Reference-point guided NSGA-II. It takes reference points provided by the decision maker and guides the optimization towards areas of the Pareto-front close to the reference points.We propose several extensions of R-NSGA-II. In the beginning of the optimization runtime the population is spread-out in the objective space while towards the end of the runtime most solutions are close to reference points. The purpose of a large population is to avoid local optima and to explore the search space which is less important when the algorithm has converged to the reference points. Therefore, we reduce the population size towards the end of the runtime. R-NSGA-II controls the objective space diversity through the epsilon parameter. We reduce the diversity in the population as it approaches the reference points. In a previous study we showed that R-NSGA-II keeps a high diversity until late in the optimization run which is caused by the Pareto-fitness. This slows down the progress towards the reference points. We constrain the Pareto-fitness to force a faster convergence. For the same reason an approach is presented that delays the use of the Pareto-fitness: Initially, the fitness is based only on reference point distance and diversity. Later, when the population has converged towards the Pareto-front, Pareto-fitness is considered as primary-, and distance as secondary fitness.

  • 39.
    Siegmund, Florian
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Deb, Kalyanmoy
    Department of Electrical and Computer Engineering, Michigan State University, USA.
    A Ranking and Selection Strategy for Preference-based Evolutionary Multi-objective Optimization of Variable-Noise Problems2016In: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE conference proceedings, 2016, 3035-3044 p.Conference paper (Refereed)
    Abstract [en]

    In simulation-based Evolutionary Multi-objective Optimization the number of simulation runs is very limited, since the complex simulation models require long execution times. With the help of preference information, the optimization result can be improved by guiding the optimization towards relevant areas in the objective space, for example with the R-NSGA-II algorithm [9], which uses a reference point specified by the decision maker. When stochastic systems are simulated, the uncertainty of the objective values might degrade the optimization performance. By sampling the solutions multiple times this uncertainty can be reduced. However, resampling methods reduce the overall number of evaluated solutions which potentially worsens the optimization result. In this article, a Dynamic Resampling strategy is proposed which identifies the solutions closest to the reference point which guides the population of the Evolutionary Algorithm. We apply a single-objective Ranking and Selection resampling algorithm in the selection step of R-NSGA-II, which considers the stochastic reference point distance and its variance to identify the best solutions. We propose and evaluate different ways to integrate the sampling allocation method into the Evolutionary Algorithm. On the one hand, the Dynamic Resampling algorithm is made adaptive to support the EA selection step, and it is customized to be used in the time-constrained optimization scenario. Furthermore, it is controlled by other resampling criteria, in the same way as other hybrid DR algorithms. On the other hand, R-NSGA-II is modified to rely more on the scalar reference point distance as fitness function. The results are evaluated on a benchmark problem with variable noise landscape.

  • 40.
    Siegmund, Florian
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Deb, Kalyanmoy
    Department of Electrical and Computer Engineering, Michigan State University, USA.
    Dynamic Resampling for Preference-based Evolutionary Multi-Objective Optimization of Stochastic Systems2015Conference paper (Refereed)
    Abstract [en]

    In Multi-objective Optimization many solutions have to be evaluated in order to provide the decision maker with a diverse choice of solutions along the Pareto-front. In Simulation-based Optimization the number of optimization function evaluations is usually very limited due to the long execution times of the simulation models. If preference information is available however, the available number of function evaluations can be used more effectively. The optimization can be performed as a guided, focused search which returns solutions close to interesting, preferred regions of the Pareto-front. One such algorithm for guided search is the Reference-point guided Non-dominated Sorting Genetic Algorithm II, R-NSGA-II. It is a population-based Evolutionary Algorithm that finds a set of non-dominated solutions in a single optimization run. R-NSGA-II takes reference points in the objective space provided by the decision maker and guides the optimization towards areas of the Pareto-front close the reference points.

    In Simulation-based Optimization the modeled and simulated systems are often stochastic and a common method to handle objective noise is Resampling. Reliable quality assessment of system configurations by resampling requires many simulation runs. Therefore, the optimization process can benefit from Dynamic Resampling algorithms that distribute the available function evaluations among the solutions in the best possible way. Solutions can vary in their sampling need. For example, solutions with highly variable objective values have to be sampled more times to reduce their objective value standard error. Dynamic resampling algorithms assign as much samples to them as is needed to reduce the uncertainty about their objective values below a certain threshold. Another criterion the number of samples can be based on is a solution's closeness to the Pareto-front. For solutions that are close to the Pareto-front it is likely that they are member of the final result set. It is therefore important to have accurate knowledge of their objective values available, in order to be able to to tell which solutions are better than others. Usually, the distance to the Pareto-front is not known, but another criterion can be used as an indication for it instead: The elapsed optimization time. A third example of a resampling criterion can be the dominance relations between different solutions. The optimization algorithm has to determine for pairs of solutions which is the better one. Here both distances between objective vectors and the variance of the objective values have to be considered which requires a more advanced resampling technique. This is a Ranking and Selection problem.

    If R-NSGA-II is applied in a scenario with a stochastic fitness function resampling algorithms have to be used to support it in the best way and avoid a performance degradation due to uncertain knowledge about the objective values of solutions. In our work we combine R-NSGA-II with several resampling algorithms that are based on the above mentioned resampling criteria or combinations thereof and evaluate which are the best criteria the sampling allocation can be based on, in which situations.

    Due to the preference information R-NSGA-II has an important fitness information about the solutions at its disposal: The distance to reference points. We propose a resampling strategy that allocates more samples to solutions close to a reference point. This idea is then extended with a resampling technique that compares solutions based on their distance to the reference point. We base this algorithm on a classical Ranking and Selection algorithm, Optimal Computing Budget Allocation, and show how OCBA can be applied to support R-NSGA-II. We show the applicability of the proposed algorithms in a case study of an industrial production line for car manufacturing.

  • 41.
    Siegmund, Florian
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Deb, Kalyanmoy
    Department of Electrical and Computer Engineering, Michigan State University, East Lansing, USA.
    Hybrid Dynamic Resampling Algorithms for Evolutionary Multi-objective Optimization of Invariant-Noise Problems2016In: Applications of Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal, March 30 – April 1, 2016, Proceedings, Part II / [ed] Giovanni Squillero, Paolo Burelli, 2016, Vol. 9598, 311-326 p.Conference paper (Refereed)
    Abstract [en]

    In Simulation-based Evolutionary Multi-objective Optimization (EMO) the available time for optimization usually is limited. Since many real-world optimization problems are stochastic models, the optimization algorithm has to employ a noise compensation technique for the objective values. This article analyzes Dynamic Resampling algorithms for handling the objective noise. Dynamic Resampling improves the objective value accuracy by spending more time to evaluate the solutions multiple times, which tightens the optimization time limit even more. This circumstance can be used to design Dynamic Resampling algorithms with a better sampling allocation strategy that uses the time limit. In our previous work, we investigated Time-based Hybrid Resampling algorithms for Preference-based EMO. In this article, we extend our studies to general EMO which aims to find a converged and diverse set of alternative solutions along the whole Pareto-front of the problem. We focus on problems with an invariant noise level, i.e. a flat noise landscape.

  • 42.
    Siegmund, Florian
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Deb, Kalyanmoy
    Department of Electrical and Computer Engineering, Michigan State University, USA.
    Hybrid Dynamic Resampling for Guided Evolutionary Multi-Objective Optimization2015In: Evolutionary Multi-Criterion Optimization: 8th International Conference, EMO 2015, Guimarães, Portugal, March 29 --April 1, 2015. Proceedings, Part I / [ed] António Gaspar-Cunha, Carlos Henggeler Antunes, Carlos Coello Coello, Springer, 2015, 366-380 p.Conference paper (Refereed)
    Abstract [en]

    In Guided Evolutionary Multi-objective Optimization the goal is to find a diverse, but locally focused non-dominated front in a decision maker’s area of interest, as close as possible to the true Pareto-front. The optimization can focus its efforts towards the preferred area and achieve a better result [9, 17, 7, 13]. The modeled and simulated systems are often stochastic and a common method to handle the objective noise is Resampling. The given preference information allows to define better resampling strategies which further improve the optimization result. In this paper, resampling strategies are proposed that base the sampling allocation on multiple factors, and thereby combine multiple resampling strategies proposed by the authors in [15]. These factors are, for example, the Pareto-rank of a solution and its distance to the decision maker’s area of interest. The proposed hybrid Dynamic Resampling Strategy DR2 is evaluated on the Reference point-guided NSGA-II optimization algorithm (R-NSGA-II) [9].

  • 43.
    Steinmetz, Franz
    et al.
    German Aerospace Center (DLR), Institute of Robotics and Mechatronics, Oberpfaffenhofen-Weßling, Germany.
    Montebelli, Alberto
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Kyrki, Ville
    Department of Electrical Engineering and Automation, Aalto Univeristy, Aalto, Finland.
    Simultaneous kinesthetic teaching of positional and force requirements for sequential in-contact tasks2015In: Proceedings of the 2015 IEEE-RAS International Conference on Humanoid Robots (Humanoids), IEEE Computer Society, 2015, 202-209 p.Conference paper (Refereed)
    Abstract [en]

    This paper demonstrates a method for simulta-neous transfer of positional and force requirements for in-contact tasks from a human instructor to a robotic arm throughkinesthetic teaching. This is achieved by a specific use of thesensory configuration, where a force/torque sensor is mountedbetween the tool and the flange of a robotic arm endowedwith integrated torque sensors at each joint. The humandemonstration is modeled using Dynamic Movement Primitives.Following human demonstration, the robot arm is provided withthe capacity to perform sequential in-contact tasks, for examplewriting on a notepad a previously demonstrated sequence ofcharacters. During the reenactment of the task, the systemis not only able to imitate and generalize from demonstratedtrajectories, but also from their associated force profiles. In fact,the implemented framework is extended to successfully recoverfrom perturbations of the trajectory during reenactment andto cope with dynamic environments.

  • 44.
    Telander, Andreas
    et al.
    University of Skövde, School of Engineering Science.
    Fahlgren, Jessica
    University of Skövde, School of Engineering Science.
    Building a new production line: Problems, pitfalls and how to gain social sustainability2015Independent thesis Basic level (university diploma), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This thesis has been performed in collaboration with Volvo Cars Engine in Skövde, Sweden and Zhangjia-kou, China in order to receive a bachelor degree in automation engineering from the University of Skövde.

    The project focuses on analyzing the capacity of a future production line by using discrete event simulation. The production line is built in two different discrete event simulation software, FACTS analyzer and Plant Simulation. The focus of the study will be to compare the output results from the two software in order to give recommendations for which software to use in similar cases. This is done in order for Volvo Cars Corporation to have as a basis for further work in similar cases. The aim of the work is to verify the planned capacity of the new production line and to perform a leadership study with Chinese engineers in order to find out how they view the Swedish leadership and how this can be adapted to China and the Chinese culture and give recommendations for future work.

    The results of the capacity analysis show that the goals of parts produced can be reached for both planned capacities but also that there are potential constraints that have been identified in the system. The results of the leadership study also show that the overall approach should be slightly adapted to be better suited for the Chinese culture. The comparison of the two simulation software suggests that FACTS Analyzer is suit-able to use when less complex logic or systems are represented, however when building more complex models consisting of more complex logic Plant Simulation is more suitable.

  • 45.
    Thabet, Mohammad
    et al.
    Department of Intelligent Hydraulics and Automation, Tampere University of Technology, Finland.
    Montebelli, Alberto
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Kyrki, Ville
    Department of Electrical Engineering and Automation, Aalto University, Finland.
    Learning Movement Synchronization in Multi-component Robotic Systems2016In: : ICRA 2016, Institute of Electrical and Electronics Engineers (IEEE), 2016, 249-256 p.Conference paper (Refereed)
  • 46.
    Tykal, Martin
    et al.
    Aalto University, Finland.
    Montebelli, Alberto
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Kyrki, Ville
    Department of Electrical Engineering and Automation, Aalto University, Finland.
    Incrementally Assisted Kinesthetic Teaching for Programming by Demonstration2016In: Human-Robot Interaction (HRI), 2016 11th ACM/IEEE International Conference on: HRI 2016, IEEE Computer Society, 2016, 205-212 p.Conference paper (Refereed)
  • 47.
    Vernon, David
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Artificial Cognitive Systems: A Primer2014Book (Refereed)
    Abstract [en]

    This book offers a concise and accessible introduction to the emerging field of artificial cognitive systems. Cognition, both natural and artificial, is about anticipating the need for action and developing the capacity to predict the outcome of those actions. Drawing on artificial intelligence, developmental psychology, and cognitive neuroscience, the field of artificial cognitive systems has as its ultimate goal the creation of computer-based systems that can interact with humans and serve society in a variety of ways. This primer brings together recent work in cognitive science and cognitive robotics to offer readers a solid grounding on key issues.

  • 48.
    Vernon, David
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Cognitive System2014In: Computer Vision: A Reference Guide / [ed] Katsushi Ikeuchi, Boston: Springer, 2014, 100-106 p.Chapter in book (Refereed)
  • 49.
    Vernon, David
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Beetz, Michael
    Institute for Artificial Intelligence, University of Bremen, Bremen, Germany.
    Giulio, Sandini
    Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genova, Italy.
    Prospection in cognition: The case for joint episodic-procedural memory in cognitive robotics2015In: Frontiers in Robotics and AI, ISSN 2296-9144, Vol. 2, 19Article in journal (Refereed)
  • 50.
    Vernon, David
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Billing, Erik
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Hemeren, Paul
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Thill, Serge
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Ziemke, Tom
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. Department of Computer and Information Science, Linköping University, Sweden.
    An Architecture-oriented Approach to System Integration in Collaborative Robotics Research Projects: An Experience Report2015In: Journal of Software Engineering for Robotics, ISSN 2035-3928, E-ISSN 2035-3928, Vol. 6, no 1, 15-32 p.Article in journal (Refereed)
    Abstract [en]

    Effective system integration requires strict adherence to strong software engineering standards, a practice not much favoured in many collaborative research projects. We argue that component-based software engineering (CBSE) provides a way to overcome this problem because it provides flexibility for developers while requiring the adoption of only a modest number of software engineering practices. This focus on integration complements software re-use, the more usual motivation for adopting CBSE. We illustrate our argument by showing how a large-scale system architecture for an application in the domain of robot-enhanced therapy for children with autism spectrum disorder (ASD) has been implemented. We highlight the manner in which the integration process is facilitated by the architecture implementation of a set of placeholder components that comprise stubs for all functional primitives, as well as the complete implementation of all inter-component communications. We focus on the component-port-connector meta-model and show that the YARP robot platform is a well-matched middleware framework for the implementation of this model. To facilitate the validation of port-connector communication, we configure the initial placeholder implementation of the system architecture as a discrete event simulation and control the invocation of each component’s stub primitives probabilistically. This allows the system integrator to adjust the rate of inter-component communication while respecting its asynchronous and concurrent character. Also, individual ports and connectors can be periodically selected as the simulator cycles through each primitive in each sub-system component. This ability to control the rate of connector communication considerably eases the task of validating component-port-connector behaviour in a large system. Ultimately, over and above its well-accepted benefits for software re-use in robotics, CBSE strikes a good balance between software engineering best practice and the socio-technical problem of managing effective integration in collaborative robotics research projects. 

12 1 - 50 of 54
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf