Högskolan i Skövde

his.sePublications
Change search
Refine search result
123 1 - 50 of 146
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Adamson, Göran
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Production Engineering, KTH Royal Institute of Technology, Stockholm, Sweden.
    Holm, Magnus
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Moore, Philip
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Academy for Innovation & Research, Falmouth University, UK.
    Adaptive Robotic Control in Cloud Environments2014In: Proceedings of the 24th International Conference on Flexible Automation and Intelligent Manufacturing / [ed] F. Frank Chen, Lancaster, Pennsylvania, USA: DEStech Publications, Inc , 2014, p. 37-44Conference paper (Refereed)
    Abstract [en]

    The increasing globalization is a trend which forces manufacturing industry of today to focus on more cost-effective manufacturing systems and collaboration within global supply chains and manufacturing networks. Cloud Manufacturing (CM) is evolving as a new manufacturing paradigm to match this trend, enabling the mutually advantageous sharing of resources, knowledge and information between distributed companies and manufacturing units. Providing a framework for collaboration within complex and critical tasks, such as manufacturing and design, it increases the companies’ ability to successfully compete on a global marketplace. One of the major, crucial objectives for CM is the coordinated planning, control and execution of discrete manufacturing operations in a collaborative and networked environment. This paper describes the overall concept of adaptive Function Block control of manufacturing equipment in Cloud environments, with the specific focus on robotic assembly operations, and presents Cloud Robotics as “Robot Control-as-a-Service” within CM.

  • 2.
    Adamson, Göran
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre. Production Engineering KTH Royal Institute of Technology Stockholm, Sweden.
    Holm, Magnus
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Moore, Philip
    Academy for Innovation & Research, Falmouth University, Cornwall, United Kingdom.
    Function Block Approach for Adaptive Robotic Control in Virtual and Real Environments2014In: Proceedings of the 14th Mechatronics Forum International Conference, Mechatronics 2014 / [ed] Leo J. De Vin; Jorge Solis, Karlstad: Karlstads universitet, 2014, p. 473-479Conference paper (Refereed)
    Abstract [en]

    Many manufacturing companies are facing an increasing amount of changes and uncertainty, caused by both internal and external factors. Frequently changing customer and market demands lead to variations in manufacturing quantities, product design and shorter product life-cycles, and variations in manufacturing capability and functionality contribute to a high level of uncertainty. The result is unpredictable manufacturing system performance, with an increased number of unforeseen events occurring in these systems. Such events are difficult for traditional planning and control systems to satisfactorily manage. For scenarios like these, with a dynamically changing manufacturing environment, adaptive decision making is crucial for successfully performing manufacturing operations. Relying on real-time information of manufacturing processes and operations, and their enabling resources, adaptive decision making can be realized with a control approach combining IEC 61499 event-driven Function Blocks (FBs) with manufacturing features. These FBs are small decision-making modules with embedded algorithms designed to generate the desired equipment control code. When dynamically triggered by event inputs, parameter values in their data inputs are forwarded to the appropriate algorithms, which generate new events and data output as control instructions. The data inputs also include monitored real-time information which allows the dynamic creation of equipment control code adapted to the actual run-time conditions on the shop-floor. Manufacturing features build on the concept that a manufacturing task can be broken down into a sequence of minor basic operations, in this research assembly features (AFs). These features define atomic assembly operations, and by combining and implementing these in the event-driven FB embedded algorithms, automatic code generation is possible. A test case with a virtual robot assembly cell is presented, demonstrating the functionality of the proposed control approach.

  • 3.
    Adattil, Ruksana
    University of Skövde, School of Engineering Science.
    Review on impact of worker’s psychosocial environment under operator 4.0 framework2022Independent thesis Advanced level (degree of Master (One Year)), 12 credits / 18 HE creditsStudent thesis
    Abstract [en]

    In manufacturing, emerging digital technologies related to industry 4.0 are playing an assisting role for operators, and just as in previous industrial revolutions the paradigm for operators in the industry is changing. This study has two key goals. The first is to look into the impact of the worker's psychosocial impacts under the operator 4.0 typologies during assembly, training, and maintenance operations, and the second is to look into the potential changes in the operator framework as the industry progresses from 4.0 to 5.0. This study proposed a theoretical framework for assessing psychosocial impacts in operator 4.0 typologies. The proposed framework can be utilized by the company managers, researchers, production engineers, and human resource personnel for the psychosocial risk assessment of the operators in assembly, training, and maintenance operations as self-report questionnaires. This study employed a systematic literature review strategy to answer the study objectives. The findings reveal that the nature of work, the social and organizational environment of work, and individual impacts are all key categories, that might impact operators’ psychosocial environments in assembly, training, and maintenance operations under the operator 4.0 typologies.This study focuses on determining the psychosocial consequences of the operator 4.0 typologies and helps the operators to become more aware, and equipment designers should consider operator psychosocial work conditions when designing new augmented equipment for assisting operators in the work environment. Most advanced technologies are unfamiliar to operators, and they have exhibited a reluctance to accept new technology because it significantly changes their working environment. Which necessitates the training and awareness of operators regarding advanced technologies. Operator 4.0 typologies were introduced with a vision to create a socially sustainable environment for operators. However, the identified psychosocial impacts make it favorable and unfavorable to the operators.

    Download full text (pdf)
    fulltext
  • 4.
    Alenljung, Beatrice
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Andreasson, Rebecca
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. Department of Information Technology, Visual Information & Interaction. Uppsala University, Uppsala, Sweden.
    Billing, Erik A.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Lindblom, Jessica
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    User Experience of Conveying Emotions by Touch2017In: Proceedings of the 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE, 2017, p. 1240-1247Conference paper (Refereed)
    Abstract [en]

    In the present study, 64 users were asked to convey eight distinct emotion to a humanoid Nao robot via touch, and were then asked to evaluate their experiences of performing that task. Large differences between emotions were revealed. Users perceived conveying of positive/pro-social emotions as significantly easier than negative emotions, with love and disgust as the two extremes. When asked whether they would act differently towards a human, compared to the robot, the users’ replies varied. A content analysis of interviews revealed a generally positive user experience (UX) while interacting with the robot, but users also found the task challenging in several ways. Three major themes with impact on the UX emerged; responsiveness, robustness, and trickiness. The results are discussed in relation to a study of human-human affective tactile interaction, with implications for human-robot interaction (HRI) and design of social and affective robotics in particular. 

    Download full text (pdf)
    fulltext
  • 5.
    Arias Ramos, Ceferino
    University of Skövde, School of Technology and Society.
    Programming and Image Processing in a Compact Production Cell2012Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In recent years, control system in the automation industries has become more and more useful, covering a wide range of fields, for example, industrial instrumentation, control and monitoring systems. Vision systems are used nowadays to improve products quality control, saving costs, time, and obtaining a better accuracy than a human operator in the manufacturing process of companies. Combining a vision system with a suitable automated system allow companies to cover a wide range of products and rapid production. All these factors are considered in this project.

    The aim of this project is to upgrade the functionality of a Nokia-Cell, which was used in a quality control process for the back shells of Nokia cell phones. The project includes design, upgrade and implementation of a new system in order to make the cell work properly. The Nokia-Cell is composed of the following basic modules: vision and image recognition system, automation system devices (PC and PLC, robot), and other mechatronics devices. The new system will consist of a new camera, due to the poor connectivity and quality of the old camera. For the same reason, a new PC will replace two older ones for communication and vision recognition. The new system will also include a new PLC of Beckhoff to replace the aging one of Omron so as to facilitate the connections using the same language. In addition, IEC-61499 Function Blocks standard is adopted for programming the Nokia-Cell.

    It is expected that the results of this project will contribute to both research and education in the future. In addition, it would be correctly to apply the results to industries in vision-based quality control systems.

    Download full text (pdf)
    Programming and Image Processing in a Production Compact Cell
  • 6.
    Arrieta, Aitor
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    FB-Environment in Wise-Shop Floor: Algorithm parser and code generation2012Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    IEC (International Electrotechnical Commission) is the authority that publishes different standards in the  fields  of  electrical  and  electronics  engineering,  to  be  used  internationally.  In  the  area  of manufacturing, it has demanded a new standard to fulfil better solutions of dynamic requirements. The  IEC  61499  redacted  by  IEC  offers  interoperability,  portability,  configurability  and  distributed control applications for manufacturing processes. However, this standard is not a replacement of IEC 61131-3,  one  of  the  most  used  standards  in  industry;  instead,  it  is  a  complement  of  it.  The  basic software units of IEC 61499 are named Function Blocks (FBs), which can be described as blocks that encapsulate functionality. By combining FBs together, it is possible to solve complex problems.   The  objective  of  this  project  (in  close  cooperation  with  another  project)  is  to  develop  a  software environment in Java language. It follows the requirements of IEC 61499, and implement a Function Block  designer  and  a  runtime  execution  environment,  as  a  part  of  an  existing  Wise-ShopFloor framework. The scope of this project covers:     FB  algorithm  editor:  Each  FB  has  one  or  more  algorithms,  which  can  be  defined  in  the algorithm editor using IEC 61131-3 or Java.     FB serialization: Opening and saving the configuration of FBs in Java Class file is one of the tasks  of  this  project.  As  soon  as  the  configuration  is  saved,  the  Java  code  of  FB  can  be generated. Java code is generated because compiled Java allows execution of FB. Saving in Java  Class  file  permits  portability,  i.e.  the  saved  configuration  can  be  opened  in  any  JVM system, and vice versa.      Case study: A simulation of an assembly station using an ABB IRB 140 robot is studied and implemented using the runtime simulator of the Java platform, in which some basic FBs have been also created in a library. This project also includes: (1) implementation of user interface and (2) FB serialization in XML. It  is  anticipated  that  the  developed  environment  will  be  able  to  save  and  open  FBs  configurations either in XML or in Java Class, following the specification of IEC 61499. It will allow portability and reusability.  Because  of  the  portability,  the  so-designed  FBs  can  be  validated  using  another  FB environment such as FBDK (Function Block Development Kit).

    Download full text (pdf)
    Thesis_Aitor_Arrieta
  • 7.
    Aslam, Tehseen
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Goienetxea Uriarte, Ainhoa
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Svensson, Henrik
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Education of the Future: Learnings and Experiences from Offering Education to Industry Professionals2022In: SPS2022: Proceedings of the 10th Swedish Production Symposium / [ed] Amos H. C. Ng; Anna Syberfeldt; Dan Högberg; Magnus Holm, Amsterdam; Berlin; Washington, DC: IOS Press, 2022, p. 665-676Conference paper (Refereed)
    Abstract [en]

    Digitalization is forcing the industry to rethink current practices in all business domains, pushing for a digital transformation of business and operations at a high rate and, thus, paving the way for new business models and making others redundant. For small and medium-sized companies (SME), in particular, it is an enormous challenge to keep up with the pace of technological development. Several initiatives have argued the industry’s need for continuous digitalization, innovation, transformation ability, and future skills and competencies development. However, the advancement of the Swedish industry in this area has been uneven, where larger organizations have begun their digital transformation journey to some extent, but SMEs risk falling behind. In addition to the technological transformation, the challenges regarding the industries’ skills supply need to be solved, where a workforce with the right competencies, knowledge, and skill sets are equally, if not more, important for remaining competitive. One of the key elements to face these challenges in the companies will be to recruit knowledgeable employees or re-skill the existing ones. Efficient access to relevant knowledge and skills is still a major concern for companies that will surely affect their competitiveness for a long time to come. This paper elaborates on the opportunities and challenges that Swedish universities face in the context of lifelong learning and education for industry professionals. The paper presents results and experiences gained from a lifelong learning project for industry professionals at the University of Skövde in collaboration with ten industry partners. The results from the project show that in addition to pedagogical methods, current structures and policies within academia need to be further developed to effectively serve industry professionals. The paper also presents a concept of education for industry professionals in the lifelong learning context based on the results and experience gained from the project.

    Download full text (pdf)
    fulltext
  • 8.
    Axelsson, Jonathan
    et al.
    University of Skövde, School of Engineering Science.
    Hultberg, Carl
    University of Skövde, School of Engineering Science.
    Realtidsstyrning av robotiserad kameraplattform2018Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The Swedish Defence Material Administration (FMV) that supplies materials to the Swedish military, has a part of its organization located in Karlsborg called test and evaluation of land combat systems. The photogroup of test and evaluation wishes to control a robotized camera platform, of the brand Vinten, in real time using a number of different positioning systems like joystick, Doppler-position radar, their self-constructed system UNIPOS and using a predicted trajectory of a launched projectile. The main goal of the project is therefore to create a control system to maneuver the camera platform with the assistance of mentioned data sources. The theoretical framework and literature review gave the members of the project the knowledge base, in serial communication and data protocols, needed to complete the project and gave understanding about earlier similar projects and choose to follow the structure of the systems development model Rational Unified Process (RUP). FMV wanted the main control unit to be a PC to be able to remotely control the system and to be able to make further developments. RUP was used to give the work structure and to make sure the quality of the end product was satisfactory. The development process consists, in accordance with the RUP structure, of a number of iterations that all add some function to the system. In close cooperation with the staff at FMV the system is developed and continuously tested to ensure the quality. A simple manual has been developed to make usage of the system easier. Every data source wanted by FMV has been handled in some way throughout the project and the result was a portable system that can be ran on any PC. Tests using drones, grenade launchers and a response-test was performed to verify that the functions of the system lives up to the goals that were set up and to evaluate the systems possibilities and limitations. The tests showed that real time control is possible to some extent with all systems and that the limitations lies in the delays that exists both in signal transfers and in the camera platforms built in filters for soft movements.

    Download full text (pdf)
    fulltext
  • 9.
    Azkarate Fernández, Igor
    et al.
    Dept. of Electronics and Computing, Mondragon Unibertsitatea, Arrasate-Mondragón, Spain.
    Ayani Eguía, Mikel
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Echeverría, Luca Eciolaza
    Dept. of Electronics and Computing, Mondragon Unibertsitatea, Arrasate-Mondragón, Spain.
    Virtual commissioning of a robotic cell: An educational case study2019In: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, IEEE, 2019, p. 820-825Conference paper (Refereed)
    Abstract [en]

    The emergence of software tools for testing control programs and virtual commissioning (VC) in industrial automation projects makes it possible to shorten lead times and improve product quality, but it also brings to light the need for competent technicians in these technologies. The academic environment can support the education of future professionals by reproducing and solving industrial problems in the classroom. This article presents a use case in which students work on a project to develop and validate the control system of a robotic cell. The study compares the conventional way of working against the use of a digital twin and exposes the benefits of it. 

  • 10.
    Basem, Mumthas
    University of Skövde, School of Engineering Science.
    Comparing PLC, Software Containers and Edge Computing for future industrial use: a literature review2022Independent thesis Advanced level (degree of Master (Two Years)), 12 credits / 18 HE creditsStudent thesis
    Abstract [en]

    Industrial automation is critical in today's industry. The majority of new scientific and technological advancements are either enabling technologies or industrial automation application areas. In the past, the two main forms of control systems were distributed control systems (DCS) and programmable logic controllers (PLCs). PLCs have been referred as the "brain" of production systems because they provide the capacity to meet interoperability, reconfigurability, and portability criteria. Today's industrial automation systems rely heavily on control software to ensure that the automation process runs smoothly and efficiently. Furthermore, requirements like flexibility, adaptability, and robustness add to the control software's complexity. As a result, new approaches to building control software are required. The International Electrotechnical Commission attempted to meet these new and impending demands with the new IEC 61499 family of standards for distributed automation systems. The IEC 61499 standard specifies a high-level system design language for distributed data and control. With the advancement of these technologies like edge/fog computing and IIoT, how the control software in future smart factory managed is discussed here. This study aims to do a systematic literature review on PLC, software containers, edge/fog computing and IIoT for future industrial use. The objective is to identify the correspondence between the functional block (IEC 61499) and the container technology such as Docker. The impact of edge computing and the internet of things in industrial automation is also analysed. Since the aim is to do a comparative study, a qualitative explorative study is done, with the purpose to gather rich insight about the field. The analysis of the study mainly focused on four major areas such as deployment, run time, performance and security of these technologies. The result shows that containerisation or container based solutions is the basis for future automation as it outperforms virtual machines in terms of deployment, run time, performance and security. 

    Download full text (pdf)
    fulltext
  • 11.
    Bentabol Muñoz, Emilio
    et al.
    University of Skövde, School of Engineering Science.
    Bosque Ibáñez, Carlos
    University of Skövde, School of Engineering Science.
    González Ruiz, Pedro
    University of Skövde, School of Engineering Science.
    Hurtado de Mendoza, Jose Manuel
    University of Skövde, School of Engineering Science.
    Ruiz Zúñiga, Enrique
    University of Skövde, School of Engineering Science.
    Linking Wise-ShopFloor to an ABB IRB-140 Robot: Remote control, monitoring, and programming of an ABB robot IRC 5 through the internet2010Independent thesis Basic level (degree of Bachelor), 15 credits / 22,5 HE creditsStudent thesis
    Abstract [en]

    The aim of this project is integrate the new robot IRB140 from ABB inside the application Wise ShopFloor (Web-based integrated sensor-driven e-ShopFloor) and the integration of a web camera inside the application as well. In order to integrate the ABB IRB140 inside the application, a Java 3D model has to be created, the kinematics and collision constrains have to be defined also and the GUI application modified to fit the virtual model and the camera inside the application. The user has to be able to jog the web camera and zoom it. Changes in the server side have been done in order to introduce new functionalities such as the sessions management, the communication mechanism now is more general using Java inheritance.

    Download full text (pdf)
    fulltext
  • 12.
    Berenji, Shahram
    University of Skövde, School of Engineering Science.
    AGV planning optimization for material supply at production lines2022Independent thesis Advanced level (degree of Master (Two Years)), 10,5 credits / 16 HE creditsStudent thesis
    Abstract [en]

    In recent years, customers' life stylish and behaviour have been changed and their tendencies become more diverse than before. As well as, market researches show a growing trend of special demands in their inclination. Accordingly, the companies compete to meet market demands for the reason of satisfying and maintaining the loyalty of their customers. This has led researchers to seek flexible methods and optimum solutions in production processes. In this regard, the manufacturing flow is one of the places in which flexibility and optimization can cause improvement is the assembly line. So, to meet the increasing diversity of market demand, assembly line processes must have the flexibility and ability to dynamically change product specifications and features while minimizing the operating and production processes' costs. For this reason, companies use solutions for designing assembly lines based on designing a flexible manufacturing system (FMS) for fast and better managing material feeding and handling. The FMS is a manufacturing method that is developed to easily can compatible with changes in production in the type and quantity of the product that has been manufactured. The performance of an FMS depends on the precise and efficient scheduling of material handling equipment. In this regard, the use of automated guided vehicles (AGV) instead of conveyors in an assembly line provid effectiveness and transformative.The aim of this research is to obtain the optimal numbers of AGVs required for the purpose of material handling at assembly lines. To solve the problem, a mathematical model has been developed. The objective function of the model is the number of AGVs. Accordingly, a set of variables and constraints have been determined have been considered to solve the linear optimization equation. In addition, the influence of workstations’ buffer capacity on material handling activities and the number of AGVs are studied by using this developed mathematical model.In order to evaluate experiments and analysis of the problem, Python programming software and its libraries have been used to calculate rapidly and accurately equations of the model. Preliminary results show that according to the layout of the production line and demand/production planning, as well as determining the size of input and output buffers of workstations, the proposed mathematical model calculates the minimum number of required vehicles and by changing the size of buffers we achieve different results. The aforementioned IT artefact is implemented in the direction of industrial digitalization and can be developed as application software in the eventuality. And further, this master project is desirable to take performance to continue sustainable development principles. 

    Download full text (pdf)
    fulltext
  • 13.
    Bermúdez Román, Abel
    et al.
    University of Skövde, School of Engineering Science.
    Gaztelumendi Arriaga, Javier
    University of Skövde, School of Engineering Science.
    Building and programming an autonomous robot using a Raspberry Pi as a PLC2016Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    PLC programming students are often limited to simulated systems or soft PLCs, because the high price of the hardware and the software licenses make it difficult for faculties to use real equipment for teaching. This paper describes the design and building of a PLC controlled self-balancing robot with CodeSys and Raspberry Pi as a low-cost demonstrator model that students can use as a base to interact with a real system. A first prototype has been developed, which can be used in the future to get students involved in beginner automation courses without having to build a system from scratch.

    Download full text (pdf)
    BaPaaruarpaaplc
  • 14.
    Bi, Z.M.
    et al.
    Indiana University Purdue University Fort Wayne.
    Wang, Lihui
    University of Skövde, The Virtual Systems Research Centre. University of Skövde, School of Technology and Society.
    Dynamic control model of a cobot with three omni-wheels2010In: Robotics and Computer-Integrated Manufacturing, ISSN 0736-5845, E-ISSN 1879-2537, Vol. 26, no 6, p. 558-563Article in journal (Refereed)
    Abstract [en]

    In this paper, a new collaborative robot with omni-wheels has been proposed and its dynamic control has been developed and validated. Collaborative robots (Cobots) have been introduced to guide and assist human operators to move heavy objects in a given trajectory. Most of the existing cobots use steering wheels; typical drawbacks of using steering wheels include the difficulties to (i) follow a trajectory with a curvature larger than that of the base platform, (ii) mount encoders on steering wheels due to self-spinning of the wheels, and (iii) quarantine dynamic control performance since it is purely kinematic  control.  The  new  collaborative  robot  is  proposed  to  overcome  the  above-mentioned shortcomings. The methodologies for its dynamic control are focused and the simulation has been conducted to validate the control performance of the system.

  • 15.
    Billing, Erik
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    A New Look at Habits using Simulation Theory2017In: Proceedings of the Digitalisation for a Sustainable Society: Embodied, Embedded, Networked, Empowered through Information, Computation & Cognition, Göteborg, Sweden, 2017Conference paper (Refereed)
    Abstract [en]

    Habits as a form of behavior re-execution without explicit deliberation is discussed in terms of implicit anticipation, to be contrasted with explicit anticipation and mental simulation. Two hypotheses, addressing how habits and mental simulation may be implemented in the brain and to what degree they represent two modes brain function, are formulated. Arguments for and against the two hypotheses are discussed shortly, specifically addressing whether habits and mental simulation represent two distinct functions, or to what degree there may be intermediate forms of habit execution involving partial deliberation. A potential role of habits in memory consolidation is also hypnotized.

    Download full text (pdf)
    fulltext
  • 16.
    Billing, Erik
    et al.
    Umeå universitet, Institutionen för datavetenskap.
    Hellström, Thomas
    Umeå universitet, Institutionen för datavetenskap.
    Janlert, Lars Erik
    Umeå universitet, Institutionen för datavetenskap.
    Simultaneous control and recognition of demonstrated behavior2011Report (Other academic)
    Abstract [en]

    A method for Learning from Demonstration (LFD) is presented and evaluated on a simulated Robosoft Kompai robot. The presented algorithm, called Predictive Sequence Learning (PSL), builds fuzzy rules describing temporal relations between sensory-motor events recorded while a human operator is tele-operating the robot. The generated rule base can be used to control the robot and to predict expected sensor events in response to executed actions. The rule base can be trained under different contexts, represented as fuzzy sets. In the present work, contexts are used to represent different behaviors. Several behaviors can in this way be stored in the same rule base and partly share information. The context that best matches present circumstances can be identified using the predictive model and the robot can in this way automatically identify the most suitable behavior for precent circumstances. The performance of PSL as a method for LFD is evaluated with, and without, contextual information. The results indicate that PSL without contexts can learn and reproduce simple behaviors. The system also successfully identifies the most suitable context in almost all test cases. The robot's ability to reproduce more complex behaviors, with partly overlapping and conflicting information, significantly increases with the use of contexts. The results support a further development of PSL as a component of a dynamic hierarchical system performing control and predictions on several levels of abstraction. 

    Download full text (pdf)
    FULLTEXT01
  • 17.
    Billing, Erik
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Hellström, Thomas
    Institutionen för Datavetenskap, Umeå Universitet.
    Janlert, Lars-Erik
    Institutionen för Datavetenskap, Umeå Universitet.
    Simultaneous recognition and reproduction of demonstrated behavior2015In: Biologically Inspired Cognitive Architectures, ISSN 2212-683X, Vol. 12, p. 43-53, article id BICA114Article in journal (Refereed)
    Abstract [en]

    Predictions of sensory-motor interactions with the world is often referred to as a key component in cognition. We here demonstrate that prediction of sensory-motor events, i.e., relationships between percepts and actions, is sufficient to learn navigation skills for a robot navigating in an apartment environment. In the evaluated application, the simulated Robosoft Kompai robot learns from human demonstrations. The system builds fuzzy rules describing temporal relations between sensory-motor events recorded while a human operator is tele-operating the robot. With this architecture, referred to as Predictive Sequence Learning (PSL), learned associations can be used to control the robot and to predict expected sensor events in response to executed actions. The predictive component of PSL is used in two ways: 1) to identify which behavior that best matches current context and 2) to decide when to learn, i.e., update the confidence of different sensory-motor associations. Using this approach, knowledge interference due to over-fitting of an increasingly complex world model can be avoided. The system can also automatically estimate the confidence in the currently executed behavior and decide when to switch to an alternate behavior. The performance of PSL as a method for learning from demonstration is evaluated with, and without, contextual information. The results indicate that PSL without contextual information can learn and reproduce simple behaviors, but fails when the behavioral repertoire becomes more diverse. When a contextual layer is added, PSL successfully identifies the most suitable behavior in almost all test cases. The robot's ability to reproduce more complex behaviors, with partly overlapping and conflicting information, significantly increases with the use of contextual information. The results support a further development of PSL as a component of a dynamic hierarchical system performing control and predictions on several levels of abstraction. 

  • 18.
    Billing, Erik
    et al.
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre.
    Lowe, Robert
    University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. Department of Applied IT, University of Gothenburg, Sweden.
    Sandamirskaya, Yulia
    Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland.
    Simultaneous Planning and Action: Neural-dynamic Sequencing of Elementary Behaviors in Robot Navigation2015In: Adaptive Behavior, ISSN 1059-7123, E-ISSN 1741-2633, Vol. 23, no 5, p. 243-264Article in journal (Refereed)
    Abstract [en]

    A technique for Simultaneous Planning and Action (SPA) based on Dynamic Field Theory (DFT) is presented. The model builds on previous workon representation of sequential behavior as attractors in dynamic neural fields. Here, we demonstrate how chains of competing attractors can be used to represent dynamic plans towards a goal state. The presentwork can be seen as an addition to a growing body of work that demonstratesthe role of DFT as a bridge between low-level reactive approachesand high-level symbol processing mechanisms. The architecture is evaluatedon a set of planning problems using a simulated e-puck robot, including analysis of the system's behavior in response to noise and temporary blockages ofthe planned route. The system makes no explicit distinction betweenplanning and execution phases, allowing continuous adaptation of the planned path. The proposed architecture exploits the DFT property of stability in relation to noise and changes in the environment. The neural dynamics are also exploited such that stay-or-switch action selection emerges where blockage of a planned path occurs: stay until the transient blockage is removed versus switch to an alternative route to the goal.

    Download full text (pdf)
    Billing-etal-2015-SPA
  • 19.
    Birtic, Martin
    University of Skövde, School of Engineering Science.
    An Open Data Model for Emulation Models of Industrial Components2018Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Emulation is a technology, historically mostly used for virtual commissioning of automated industrial systems, and operator training. Trends show that new areas for deployment are being investigated. One way to broaden the scope of emulation technology is to increase emulation detail level. The University of Skövde conduct research within emulation technology, and are developing a higher detail level emulation platform performing  on component level. For transparent and systematic development of component models on this level, an open, extensible, and flexible data model for emulation models of industrial components is wanted. This thesis is contributing to this endeavour by developing a first draft of such a data model. A demonstration is also conducted by implementing a few components into the developing emulation environment, using XML as file format. An iterative "design and creation" methodology was used to develop and implement an object oriented data model. A selected set of industrial components were used to develop and demonstrate the data model, and the final result is visually represented as a class diagram together with explanatory documentation. Using the methodology and data modelling strategy used in this thesis, systematic and transparent development of emulation models on component level is possible in an extensible and flexible manner.

    Download full text (pdf)
    AnOpenDataModel
  • 20.
    Boberg, Arvid
    University of Skövde, School of Engineering Science.
    HRC implementation in laboratory environment: Development of a HRC demonstrator2018Independent thesis Advanced level (degree of Master (One Year)), 15 credits / 22,5 HE creditsStudent thesis
    Abstract [en]

    Eurofins is one of the world's largest laboratories which, among other things, offer chemical and microbiological analyses in agriculture, food and environment. Several 100.000 tests of various foods are executed each year at Eurofins’ facility in Jönköping and the current processes include much repeated manual tasks which could cause ergonomic problems. The company therefore wants to investigate the possibilities of utilizing Human-Robot Collaboration (HRC) at their facility. Human-Robot Collaboration is a growing concept that has made a big impression in both robot development and Industry 4.0. A HRC approach allow humans and robots to share their workspaces and work side by side, without being separated by a protective fence which is common among traditional industrial robots. Human-Robot Collaboration is therefore believed to be able to optimize the workflows and relieve human workers from unergonomic tasks.

    The overall aim of the research project presented is to help the company to gain a better understanding about the existing HRC technologies. To achieve this goal, the state-of-the-art of HRC had to be investigated and the needs, possibilities and limitations of HRC applications had to be identified at Eurofins’ facility. Once these have been addressed, a demonstrator could be built which could be used for evaluating the applicability and suitability of HRC at Eurofins.

    The research project presented used the design science research process. The state-of-the-art of HRC was studied in a comprehensive literature review, reviewing sterile robots and mobile robotics as well. The presented literature review could identify possible research gaps in both HRC in laboratory environments and mobile solutions for HRC applications. These areas studied in the literature review formed together the basis of the prepared observations and interviews, used to generate the necessary data to develop the design science research artefact, the demonstrator.

    ABB's software for robotic simulation and offline programming, RobotStudio, were used in the development of the demonstrator, with the collaborative robot YuMi chosen for the HRC implementation. The demonstrator presented in the research project has been built, tested and refined in accordance to the design science research process. When the demonstrator could illustrate an applicable solution, it was evaluated for its performance and quality using a mixed methods approach.

    Limitations were identified in both the performance and quality of the demonstrator's illustrated HRC implementation, including adaptability and sterility constraints. The research project presented could conclude that a HRC application would be possible at a station which were of interest by the company, but would however not be recommended due to the identified constraints. Instead, the company were recommended to look for stations which are more standardized and have less hygienic requirements. By the end of the research project, additional knowledge was contributed to the company, including how HRC can affect today's working methods at Eurofins and in laboratory environments in general.

    Download full text (pdf)
    fulltext
  • 21.
    Boberg, Arvid
    University of Skövde, School of Engineering Science.
    Virtual lead-through robot programming: Programming virtual robot by demonstration2015Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This report describes the development of an application which allows a user to program a robot in a virtual environment by the use of hand motions and gestures. The application is inspired by the use of robot lead-through programming which is an easy and hands-on approach for programming robots, but instead of performing it online which creates loss in productivity the strength from offline programming where the user operates in a virtual environment is used as well. Thus, this is a method which saves on the economy and prevents contamination of the environment. To convey hand gesture information into the application which will be implemented for RobotStudio, a Kinect sensor is used for entering the data into the virtual environment. Similar work has been performed before where, by using hand movements, a physical robot’s movement can be manipulated, but for virtual robots not so much. The results could simplify the process of programming robots and supports the work towards Human-Robot Collaboration as it allows people to interact and communicate with robots, a major focus of this work. The application was developed in the programming language C# and has two different functions that interact with each other, one for the Kinect and its tracking and the other for installing the application in RobotStudio and implementing the calculated data into the robot. The Kinect’s functionality is utilized through three simple hand gestures to jog and create targets for the robot: open, closed and “lasso”. A prototype of this application was completed which through motions allowed the user to teach a virtual robot desired tasks by moving it to different positions and saving them by doing hand gestures. The prototype could be applied to both one-armed robots as well as to a two-armed robot such as ABB’s YuMi. The robot's orientation while running was too complicated to be developed and implemented in time and became the application's main bottleneck, but remained as one of several other suggestions for further work in this project.

    Download full text (pdf)
    fulltext
  • 22.
    Chemmanthitta Gopinath, Dinesh
    University of Skövde, School of Engineering Science.
    Using Augmented Reality technology to improve health and safety for workers in Human Robot Collaboration environment: A literature review2022Independent thesis Advanced level (degree of Master (One Year)), 12 credits / 18 HE creditsStudent thesis
    Abstract [en]

    Human Robot Collaboration (HRC) allows humans to operate more efficiently by reducing their human effort. Robots can do the majority of difficult and repetitive activities with or without human input. There is a risk of accidents and crashes when people and robots operate together closely. In this area, safety is extremely important. There are various techniques to increase worker safety, and one of the ways is to use Augmented Reality (AR). AR implementation in industries is still in its early stages. The goal of this study is to see how employees' safety may be enhanced when AR is used in an HRC setting. A literature review is carried out, as well as a case study in which managers and engineers from Swedish firms are questioned about their experiences with AR-assisted safety. This is a qualitative exploratory study with the goal of gathering extensive insight into the field, since the goal is to explore approaches for AR to improve safety. Inductive qualitative analysis was used to examine the data. Visualisation, awareness, ergonomics, and communication are the most critical areas where AR may improve safety, according to the studies. When doing a task, augmented reality aids the user in visualizing instructions and information, allowing them to complete the task more quickly and without mistakes. When working near robots, AR enhances awareness and predicts mishaps, as well as worker trust in a collaborative atmosphere. When AR is utilized to engage with collaborative robots, it causes less physical and psychological challenges than when traditional approaches are employed. AR allows operators to communicate with robots without having to touch them, as well as make adjustments. As a result, accidents are avoided and safety is ensured. There is a gap between theoretical study findings and data gathered from interviews in real time. Even though AR and HRC are not new topics, and many studies are being conducted on them, there are key aspects that influence their adoption in sectors. Due to considerations such as education, experience, suitability, system complexity, time, and technology, HRC and AR are employed less for assuring safety in industries by managers in various firms. In this study, possible future solutions to these challenges are also presented.

    Download full text (pdf)
    fulltext
  • 23.
    Danielsson, Oscar
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Syberfeldt, Anna
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Brewster, Rodney
    Volvo Car Corporation, Skövde, Sweden.
    Wang, Lihui
    KTH Royal Institute of Technology, Kungliga Tekniska högskolan, Stockholm.
    Assessing Instructions in Augmented Reality for Human-Robot Collaborative Assembly by Using Demonstrators2017In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 63, p. 89-94Article in journal (Refereed)
    Abstract [en]

    Robots are becoming more adaptive and aware of their surroundings. This has opened up the research area of tight human-robot collaboration,where humans and robots work directly interconnected rather than in separate cells. The manufacturing industry is in constant need ofdeveloping new products. This means that operators are in constant need of learning new ways of manufacturing. If instructions to operatorsand interaction between operators and robots can be virtualized this has the potential of being more modifiable and available to the operators.Augmented Reality has previously shown to be effective in giving operators instructions in assembly, but there are still knowledge gapsregarding evaluation and general design guidelines. This paper has two aims. Firstly it aims to assess if demonstrators can be used to simulatehuman-robot collaboration. Secondly it aims to assess if Augmented Reality-based interfaces can be used to guide test-persons through apreviously unknown assembly procedure. The long-term goal of the demonstrator is to function as a test-module for how to efficiently instructoperators collaborating with a robot. Pilot-tests have shown that Augmented Reality instructions can give enough information for untrainedworkers to perform simple assembly-tasks where parts of the steps are done with direct collaboration with a robot. Misunderstandings of theinstructions from the test-persons led to multiple errors during assembly so future research is needed in how to efficiently design instructions.

    Download full text (pdf)
    fulltext
  • 24.
    Deb, Kalyanmoy
    et al.
    Department of Electrical and Computer Engineering, Michigan State University, USA.
    Siegmund, Florian
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Ng, Amos H. C.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    R-HV: A Metric for Computing Hyper-volume for Reference Point-based EMOs2015In: Swarm, Evolutionary, and Memetic Computing: 5th International Conference, SEMCCO 2014, Bhubaneswar, India, December 18-20, 2014, Revised Selected Papers / [ed] Bijaya Ketan Panigrahi, Ponnuthurai Nagaratnam Suganthan & Swagatam Das, Springer, 2015, p. 98-110Chapter in book (Refereed)
    Abstract [en]

    For evaluating performance of a multi-objective optimizationfor finding the entire efficient front, a number of metrics, such as hypervolume, inverse generational distance, etc. exists. However, for evaluatingan EMO algorithm for finding a subset of the efficient frontier, the existing metrics are inadequate. There does not exist many performancemetrics for evaluating a partial preferred efficient set. In this paper, wesuggest a metric which can be used for such purposes for both attainableand unattainable reference points. Results on a number of two-objectiveproblems reveal its working principle and its importance in assessingdifferent algorithms. The results are promising and encouraging for itsfurther use.

  • 25.
    Egaña Iztueta, Lander
    et al.
    University of Skövde, School of Engineering Science.
    Roda Martínez, Javier
    University of Skövde, School of Engineering Science.
    Function Block Algorithms for Adaptive Robotic Control2014Independent thesis Basic level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The purpose of this project is the creation of an adaptive Function Block control system, and the implementation of Artificial Intelligence integrated within the Function Block control system, using IEC 61499 standard to control an ABB 6-axis virtual robot, simulated in the software RobotStudio. To develop these objectives, we studied a lot of necessary concepts and how to use three different softwares. To learn how to use the softwares, some tests were carried out. RobotStudio is a program developed by ABB Robotics Company where an ABB robot and a station are simulated. There, we designed and created a virtual assembly cell with the virtual IRB140 robot and the necessary pieces to simulate the system. To control the robot and the direct access to the different tools of RobotStudio, it is necessary to use an application programming interface (API) developed by ABB Robotics Company. C sharp (C#) language is used to program using the API, but this language is not supported by the Function Block programming software nxtStudio. Because of this, we used VisualStudio software. In this software, we use the API libraries to start and stop the robot and load a RAPID file in the controller. In a RAPID file the instructions that the robot must follow are written. So, we had to learn about how to program in C# language and how to use VisualStudio software. Also, to learn about IEC 61499 standard it was necessary to read some books. This standard determines how an application should be programmed through function blocks. A function block is a unit of program with a certain functionality which contains data and variables that can be manipulated in the same function block by several algorithms. To program in this standard we learnt how to use nxtStudio software, consuming a lot of time because the program is quite complex and it is not much used in the industrial world yet. Some tests were performed to learn different programing skills in this standard, such as how to use UDP communication protocol and how to program interfaces. Learning UDP communication was really useful because it is necessary for communication between nxtStudio and other programs, and also learning how to use interfaces to let the user access the program. Once we had learnt about how to use and program the different softwares and languages, we began to program the project. Then, we had some troubles with nxtStudio because strings longer than fourteen characters cannot be used here. So, a motion alarm was developed in VisualStudio program. And another important limitation of nxtStudio is that C++ language cannot be used. Therefore, the creation of an Artificial Intelligence system was not possible. So, we created a Function Block control system. This system is a logistical system realised through loops, conditions and counters. All this makes the robot more adaptive. As the AI could not be carried out because of the different limitations, we theoretically designed the AI system. It will be possible to implement the AI when the limitations and the problems are solved.

    Download full text (pdf)
    FUNCTION BLOCK ALGORITHMS FOR ADAPTIVE ROBOTIC CONTROL
  • 26.
    Einevik, Johan
    et al.
    University of Skövde, School of Engineering Science.
    Kurri, John
    University of Skövde, School of Engineering Science.
    Emulering av en produktioncell med Visionguidning: Virtuell idrifttagning2017Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Using a virtual twin of a production cell, makes it possible for programming and different functional testing of panels to be performed in early stages of development. A virtual twin contributes to a simpler debugging and to identify problems and minimize cost in commissioning of the production cell. The aim for the project is to investigate how well an emulated cell will perform compared to the real production cell in a factory acceptance test. Another objective is to investigate how you can use real CAD models in the emulation and what type of criteria the models should meet. The project had a lot of challenges and one of them was the difficulty to emulate the safety systems. This was solved by bypassing the safety in the PLC program. One important thing about emulation is communication between the different software used in the system. In this project, it proved successful to distribute the software on three computers to ease the workload of the programs used in the emulation. To use the emulated model instead of the real system is still in the research phase but in this project a lot of useful applications could be identified that could change commissioning in the future.

    Download full text (pdf)
    fulltext
  • 27.
    Ekedahl, Adam
    University of Skövde, School of Engineering Science.
    Förändring av arbetssätt med hjälp av emulering: Vid automationsprojekt mot industrin2018Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [sv]

    På uppdrag av Projektengagemang AB i Skövde har detta projekt genomförts för att studera möjligheten att kvalitetssäkra automationsprojekt bättre med hjälp av emulering. I projektets sammanhang innebär det att representera hela eller delar av automationssystemet virtuellt. För att lyckas med projektet har forskning inom områden som projektledning och virtuella miljöer studerats för att undersöka vad som i dagsläget är möjligt att genomföra. Med hjälp av litteraturen utformades ett intervjuprotokoll för genomförande av en intervjustudie. Beställande och levererande företag av automationsutrustning har bidragit för att ge en realistisk bild av hur automationsprojekt genomförs, kvalitetssäkras samt vad som idag är problematiskt. Sammanställningen och analysen av intervjustudien tyder på att vikt skall läggas vid planering och nedbrytning av projekt, för att ha en tydlig plan från början. Samt att virtuella miljöer kan användas för att testa programkod tidigare i projekt, alltså i mindre kritiska lägen. Efter en granskning av Projektengagemangs förutsättningar i förhållande till intervjustudien framkom att det finns brister och förbättringspotential gällande programstruktur och kvalitetssäkring. Förslaget för att öka kvalitetssäkringen med hjälp av emulering innefattar skapandet av ett arbetskoncept där en emuleringsmodell tillsammans med en kravspecifikation används för framtagning av ett grundprogram. Samt att företagets konstruktionsgranskning utökas till att inkludera kontroll av både programmering och eventuell emuleringsmodell. I förslaget till Projektengagemang lämnas 2 olika konfigurationer som skulle kunna användas för att inkludera skapandet och användning av emuleringsmodeller i projekt. Vilket skulle öka kvalitetssäkringen markant. I dagsläget påverkas inte ledtiden markant med införandet av emulering, dock finns möjligheten på längre sikt. Ytterligare kravställningar behöver tas i beaktning innan val av mjukvaror sker, eftersom förutsättningarna för varje projekt påverkar byggnationen av en emuleringsmodell.

    Download full text (pdf)
    fulltext
  • 28.
    Ericson, Stefan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Vision-Based Perception for Localization of Autonomous Agricultural Robots2017Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In this thesis Stefan investigates how cameras can be used for localization of an agricultural mobile robot. He focuses on relative measurement that can be used to determine where a weeding tool is operating relative a weed detection sensor. It incorporates downward-facing perspective cameras, forward-facing perspective cameras and omnidirectional cameras. Stefan shows how the camera’s ego-motion can be estimated to obtain not only the position in 3D but also the orientation. He also shows how line structures in the field can be used to navigate a robot along the rows.

    Download full text (pdf)
    fulltext
  • 29.
    Ericson, Stefan K.
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Åstrand, Björn S.
    School of Information Science, Computer and Electrical Engineering, Halmstad University, Halmstad, Sweden.
    Analysis of two visual odometry systems for use in an agricultural field environment2018In: Biosystems Engineering, ISSN 1537-5110, E-ISSN 1537-5129, Vol. 166, p. 116-125Article in journal (Refereed)
    Abstract [en]

    This paper analyses two visual odometry systems for use in an agricultural field environment. The impact of various design parameters and camera setups are evaluated in a simulation environment. Four real field experiments were conducted using a mobile robot operating in an agricultural field. The robot was controlled to travel in a regular back-and-forth pattern with headland turns. The experimental runs were 1.8–3.1 km long and consisted of 32–63,000 frames. The results indicate that a camera angle of 75° gives the best results with the least error. An increased camera resolution only improves the result slightly. The algorithm must be able to reduce error accumulation by adapting the frame rate to minimise error. The results also illustrate the difficulties of estimating roll and pitch using a downward-facing camera. The best results for full 6-DOF position estimation were obtained on a 1.8-km run using 6680 frames captured from the forward-facing cameras. The translation error (x,y,z) is 3.76% and the rotational error (i.e., roll, pitch, and yaw) is 0.0482 deg m−1. The main contributions of this paper are an analysis of design option impacts on visual odometry results and a comparison of two state-of-the-art visual odometry algorithms, applied to agricultural field data.

  • 30.
    Eriksson, Patric
    et al.
    University of Skövde, Department of Engineering Science.
    Moore, Philip
    Mechatronics Research group, School of Engineering and Manufacture, De Montfort University, Leicester, UK.
    A role for 'sensor simulation' and 'pre-emptive learning' in computer aided robotics1995In: 26th International Symposium on Industrial Robots, Symposium Proceedings: Competitive automation: new frontiers, new opportunities, Mechanical Engineering Publ. , 1995, p. 135-140Conference paper (Refereed)
    Abstract [en]

    Sensor simulation in Computer Aided Robotics (CAR) can enhance the capabilities of such systems to enable off-line generation of programmes for sensor driven robots. However, such sensor simulation is not commonly supported in current computer aided robotic environments. A generic sensor object model for the simulation of sensors in graphical environments is described in this paper. Such a model can be used to simulate a variety of sensors, for example photoelectric, proximity and ultrasonic sensors. Tests results presented here show that this generic sensor model can be customised to emulate the characteristics of the real sensors. The preliminary findings from the first off-line trained mobile robot are presented. The results indicate that sensor simulation within CARs can be used to train robots to adapt to changing environments.

  • 31.
    Eriksson, Patric Tony
    University of Skövde, Department of Engineering Science. School of Engineering and Manufacture, De Montfort University, UK.
    Enhancements in virtual robotics: Through simulation of sensors, events and 6pre-emptive' learning1996Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Virtual robotics can be used to dramatically improve the capabilities and performance of industrial robotic systems. Virtual robotics encapsulates graphical off-line programming systems and Computer Aided Robotics (CAR). However current virtual robotic tools suffer from a number of major limitations which severely restrict the ways in which they can be deployed and the performance advantages they offer to the industrial user. The research study focuses on simulation of sensors, programming of event based robotic systerns and demonstrates how intelligent robots can be trained adaptive behaviours in virtual environments. Contemporary graphical programming systems for robots can only be used to program limited sections of a robot program, since i) they do not support methods for the simulation of sensors and event detection; ii) they normally use a post-processor to translate programs from a general language to a controller specific language; iii) conternporary robots can not easily adapt to changes in their environments; and iv) robot programs created off-line must be calibrated to adjust to differences between the virtual and real robotic workcells.

    The thesis introduces a generic sensor model which can be used to model a variety of sensor types. This model allows virtual sensors to work as independent devices. It is demonstrated that using simulated sensors, event-based robot programs can be created and debugged entirely off-line. Off-line programming of event-based robotic systems demands methods for realistic handling of the communication between independent devices and process. The system must also possess the ability to manage and store information describing status and events in the environment. A blackboard architecture has been used in this research study to store environmental conditions and manage inter-process communication.

    Self-learning robots is a possible strategy to allow robots to adapt to environmental changes and to learn from their experience. If suitable learning regimes are developed robots can learn to detect changes between virtual and real environments thus minimising the need for calibration. Most learning is based on experience and this requires experimental data to be fed to the learning system. This thesis demonstrates that robot controllers using artificial neural networks for knowledge acquisition and storage can be 'pre-emptively learnt' in virtual robotic environments using virtual robots and simulated sensors. The controllers are able to generalise from the information acquired by the virtual sensors operating in the virtual environment. Arguably the biggest obstacle to the use of self learning robotic systems in real applications has been the need to train the 'real robots' extensively in the 'real environment'. 'Pre-emptive learning' removes this problem. Furthermore, it is therefore possible to develop and evaluate new learning regimes using virtual robotic systems. This approach provides an opportunity to create a variety of environments and conditions which would be impractical to create in a real environment (due to constraints of time, cost and availability). 

  • 32.
    Expósito, Idir
    et al.
    University of Skövde, School of Engineering Science.
    Mujika, Itsaso
    University of Skövde, School of Engineering Science.
    Reductions in Energy Consumption through Process Optimisation and Variable Production2017Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Energy efficiency is becoming an important objective for modern manufacturing industry. The aim of this work is to improve energy efficiency of an automated system. Since a majority of production processes are limited by an external bottleneck, the hypothesis of this work is that reducing the processing rate of the restricted processes can lead to saving in energy and resources. A methodology based on optimisation at process, cell and line levels is developed and evaluated over different scenarios.The developed methodology is then applied to a simulated production cell to study its efficacy quantitatively. In this particular case, the proposed approach yields a decrease in energy consumption of 49% at maximum production capacity. This decrease can be greater if there is an external factor such as low demand or another stage in the production line.

    Download full text (pdf)
    fulltext
  • 33.
    Fast-Berglund, Åsa
    et al.
    Chalmers University of Technology, Sweden.
    Thorvald, Peter
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Variations in cycle-time when using knowledge-based tasks for humans and robots2021In: IFAC-PapersOnLine, E-ISSN 2405-8963, Vol. 54, no 1, p. 152-157Article in journal (Refereed)
    Abstract [en]

    Operator4.0 was coined in 2016 to create a research arena to understand how the physical, cognitive, and sensorial capabilities of an operator could be enhanced by automation. To create an interaction between operator and robots, there are important factors that needs to be defined. Two important factors are the task and function allocation. Without well-defined tasks it is hard to allocate the tasks between the robot and the human to create resource flexibility. Furthermore, it the tasks are knowledge-based rather than rule-based, the cycle time between operators can differ a lot. Two assumptions are discussed regarding knowledge-based tasks and automation. These are also tested in an experiment. Results show that it is a large variation of the cycle time for both humans (between 1,58 minutes up to 4,40 minutes) and robots (between 1,94 minutes up to 4,49 minutes) when it comes to knowledge-based and machine learning systems.

    Download full text (pdf)
    fulltext
  • 34.
    Flores-García, Erik
    et al.
    KTH Royal Institute of Technology, Södertälje, Sweden.
    Jeong, Yongkuk
    KTH Royal Institute of Technology, Södertälje, Sweden.
    Wiktorsson, Magnus
    KTH Royal Institute of Technology, Södertälje, Sweden.
    Kwak, Dong Hoon
    Seoul National University, Seoul, South Korea.
    Woo, Jong Hun
    Seoul National University, Seoul, South Korea.
    Schmitt, Thomas
    Scania CV AB, Södertälje, Sweden ; Uppsala University, Sweden.
    Hanson, Lars
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. Scania CV AB, Södertälje, Sweden.
    Characterizing Digital Dashboards for Smart Production Logistics2022In: Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action: IFIP WG 5.7 International Conference, APMS 2022, Gyeongju, South Korea, September 25–29, 2022, Proceedings, Part II / [ed] Duck Young Kim; Gregor von Cieminski; David Romero, Cham: Springer Nature Switzerland AG , 2022, p. 521-528Conference paper (Refereed)
    Abstract [en]

    Developing digital dashboards (DD) that support staff in monitoring, identifying anomalies, and facilitating corrective actions are decisive for achieving the benefits of Smart Production Logistics (SPL). However, existing literature about SPL has not sufficiently investigated the characteristics of DD allowing staff to enhance operational performance. This conceptual study identifies the characteristics of DD in SPL for enhancing operational performance of material handling. The study presents preliminary findings from an ongoing laboratory development, and identifies six characteristics of DD. These include monitoring, analysis, prediction, identification, recommendation, and control. The study discusses the implications of these characteristics when applied to energy consumption, makespan, on-time delivery, and status for material handling. The study proposes the prototype of a DD in a laboratory environment involving Autonomous Mobile Robots. 

  • 35.
    Ghorbani Tajani, Mehran
    University of Skövde, School of Engineering Science.
    Manufacturing Knowledge Management Using a Virtual Factory-Based Ontology Implemented in a Graph Database2022Independent thesis Advanced level (degree of Master (One Year)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Ontology-based technologies like Semantic Web and Knowledge Graphs are promising for knowledge management in manufacturing industries. In the literature there are abundant of publications related to using ontologies to represent and capture knowledge in manufacturing. Many of them cover the use of ontologies for managing knowledge in different aspects of Product Lifecycle Management (PLM). Nevertheless, very few of them cover how ontologies can be used with virtual factory models, data and information as well as the knowledge generated from using these models and their corresponding engineering activities. An “extension” of existing ontologies is badly needed as digital, virtual models in terms of simulation and digital twins have become more popular in the industry. Without such an extended knowledge management process and system, it is difficult to re-use the artefacts and knowledge generated from the expensive and valuable virtual engineering activities. Relying on the cutting-edge graph database technologies and what they can offer regarding knowledge management, and also recent developments in the domain ontology field, an extended knowledge management implementation, specifically designed for virtual engineering has been done. Moreover, a clear roadmap for establishment of knowledge bases around production systems armed with Virtual Factory(VF) and Multi-Objective Optimization (MOO) processes has been provided. This, includes defining key elements of manufacturing procedures, constructing an ontology, defining data structure in preferably a graph database, and accessing valuable historical (provenance) data regarding different engineering entities and/or activities.

    Download full text (pdf)
    fulltext
  • 36.
    Gustavsson, Patrik
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Using Speech Recognition, Haptic Control and Augmented Reality to enable Human-Robot Collaboration in Assembly Manufacturing: Research Proposal2016Report (Other academic)
    Abstract [en]

    In recent years robots have become more adaptive and aware of the surroundings which enables them for use in human-robot collaboration. By introducing robots into the same working cell as the human, then the two can collaborate by letting the robot deal with heavy lifting, repetitive and high accuracy tasks while the human focuses on tasks that needs the flexibility of the human. Collaborative robots already exists today in the market but the usage of these robots are mainly to work in close proximity.

    Usually a teaching pendant is used to program a robot by moving it using a joystick or buttons. Using this teaching pendant for programming is usually quite slow and requires training which means that few can operate it. However, recent research shows that there exist several application using multi-modal communication systems to improve the programming of a robot. This kind of programming will be necessary to collaborate with a robot in the industry since the human in a collaborative task might have to teach the robot how to execute its task.

    This project aims to introduce a programming-by-guidance system into assembly manufacturing where the human can assist the robot by teaching the robot how to execute its task. Three technologies will be combined, speech recognition, haptic control, and augmented reality. The hypothesis is that with these three technologies an effective and intuitive programming-by-guidance system can be used within the assembly manufacturing industry. This project have three main motivators: Allowing workers, with no robot programming expertise, to teach the robot how to execute its task in an assembly manufacturing system; Reducing the development time of the robot by introducing advanced programming-by-guidance technology; Showing that augmented reality can add additional information that is useful when programming the robot.

    Download full text (pdf)
    fulltext
  • 37.
    Gustavsson, Patrik
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Virtual Reality Platform for Design and Evaluation of the Interaction in Human-Robot Collaborative Tasks in Assembly Manufacturing2020Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Industry is on the threshold of the fourth industrial revolution where smart factories area necessity to meet customer demands for increasing volumes of individualized products. Within the smart factory, cyber-physical production systems are becoming important to deal with changing production. Human-robot collaboration is an example of a cyber-physical system in which humans and robots share a workspace. By introducing robots and humans into the same working cell, the two can collaborate by allowing the robot to deal with heavy lifting, repetitive, and high accuracy tasks, while the human focuses on tasks that need intelligence, flexibility, and adaptability. There are few such collaborative applications in industry today. In the implementations that actually exist, the robots are mainly working side-by-side with humans rather than truly collaborating. Three main factors that limit the widespread application of human-robot collaboration can be identified: lack of knowledge regarding suitable human-robot collaboration tasks, lack of knowledge regarding efficient communication technologies for enabling interaction between humans and robots when carrying out tasks, and lack of efficient ways to safely analyze and evaluate collaborative tasks.

    The overall aim of this thesis is to address these problems and facilitate and improve interaction between humans and robots, with a special focus on assembly manufacturing tasks. To fulfill this aim, an assembly workstation for human-robot collaboration has been developed and implemented both physically and virtually. A virtual reality platform called ViCoR has been developed that can be used to investigate, evaluate, and analyze the interaction between humans and robots and thereby facilitate the implementation of new human-robot collaboration cells. The workstation developed has also been used for data collection and experiments during the thesis work, and used to extract knowledge of how the interaction between human and robot can be improved.

    Download full text (pdf)
    fulltext
  • 38.
    Gustavsson, Patrik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Holm, Magnus
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Syberfeldt, Anna
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Wang, Lihui
    KTH Royal Institute of Technology, Kungliga Tekniska Högskolan, Stockholm.
    Human-robot collaboration – towards new metrics for selection of communication technologies2018In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 72, p. 6p. 123-128Article in journal (Refereed)
    Abstract [en]

    Industrial robot manufacturers have in recent years developed collaborative robots and these gains more and more interest within the manufacturing industry. Collaborative robots ensure that humans and robots can work together without the robot being dangerous for the human. However, collaborative robots themselves are not enough to achieve collaboration between a human and a robot; collaboration is only possible if a proper communication between the human and the robot can be achieved. The aim of this paper is to identify and categorize technologies that can be used to enable such communication between a human and an industrial robot.

    Download full text (pdf)
    fulltext
  • 39.
    Gustavsson, Patrik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Syberfeldt, Anna
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Brewster, Rodney
    Volvo Car Corporation, Skövde, Sweden.
    Wang, Lihui
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Human-Robot Collaboration Demonstrator Combining Speech Recognition and Haptic Control2017In: Procedia CIRP, ISSN 2212-8271, E-ISSN 2212-8271, Vol. 63, p. 396-401Article in journal (Refereed)
    Abstract [en]

    In recent years human-robot collaboration has been an important topic in manufacturing industries. By introducing robots into the same working cell as humans, the advantages of both humans and robots can be utilized. A robot can handle heavy lifting, repetitive and high accuracy tasks while a human can handle tasks that require the flexibility of humans. If a worker is to collaborate with a robot it is important to have an intuitive way of communicating with the robot. Currently, the way of interacting with a robot is through a teaching pendant, where the robot is controlled using buttons or a joystick. However, speech and touch are two communication methods natural to humans, where speech recognition and haptic control technologies can be used to interpret these communication methods. These technologies have been heavily researched in several research areas, including human-robot interaction. However, research of combining these two technologies to achieve a more natural communication in industrial human-robot collaboration is limited. A demonstrator has thus been developed which includes both speech recognition and haptic control technologies to control a collaborative robot from Universal Robots. This demonstrator will function as an experimental platform to further research on how the speech recognition and haptic control can be used in human-robot collaboration. The demonstrator has proven that the two technologies can be integrated with a collaborative industrial robot, where the human and the robot collaborate to assemble a simple car model. The demonstrator has been used in public appearances and a pilot study, which have contributed in further improvements of the demonstrator. Further research will focus on making the communication more intuitive for the human and the demonstrator will be used as the platform for continued research.

    Download full text (pdf)
    fulltext
  • 40.
    Gustavsson, Patrik
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Syberfeldt, Anna
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Holm, Magnus
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Virtual reality platform for design and evaluation of human-robot collaboration in assembly manufacturing2023In: International Journal of Manufacturing Research, ISSN 1750-0591, Vol. 18, no 1, p. 28-49Article in journal (Refereed)
    Abstract [en]

    This paper presents 'virtual collaborative robot', a virtual reality platform for designing and evaluating collaboration between operators and industrial robots. Within the platform, human-robot collaboration scenarios can be created and a user can interact with a robot without the safety risks that might arise with physical industrial robots. In an initial evaluation of the platform a scenario was implemented combining speech recognition, haptic control, and augmented reality to assemble a car model. The results from this evaluation indicate that the suggested platform can be used to successfully test new applications with the standard equipment of virtual reality headsets.

  • 41.
    Hedenberg, Klas
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    Åstrand, Björn
    School of Information Technology, Halmstad University, Halmstad, Sweden.
    3D Sensors on Driverless Trucks for Detection of Overhanging Objects in the Pathway2016In: Autonomous Industrial Vehicles: From the Laboratory to the Factory Floor / [ed] Roger Bostelman, Elena Messina, West Conshohocken, PA: ASTM International, 2016, p. 41-56Chapter in book (Refereed)
    Abstract [en]

    Human-operated and driverless trucks often collaborate in a mixed work space in industries and warehouses. This is more efficient and flexible than using only one kind of truck. However, because driverless trucks need to give way to driven trucks, a reliable detection system is required. Several challenges exist in the development of such a system. The first is to select interesting situations and objects. Overhanging objects are often found in industrial environments (e.g., tines on a forklift). Second is choosing a system that has the ability to detect those situations. (The traditional laser scanner situated two decimetres above the floor does not detect overhanging objects.) Third is to ensure that the perception system is reliable. A solution used on trucks today is to mount a two-dimensional laser scanner on top and tilt the scanner toward the floor. However, objects at the top of the truck will be detected too late, and a collision cannot always be avoided. Our aim is to replace the upper two-dimensional laser scanner with a three-dimensional camera, structural light, or time-of-flight (TOF) camera. It is important to maximize the field of view in the desired detection volume. Hence, the sensor placement is important. We conducted laboratory experiments to check and compare the various sensors' capabilities for different colors, using tines and a model of a tine in a controlled industrial environment. We also conducted field experiments in a warehouse. Our conclusion is that both the tested structural light and TOF sensors have problems detecting black items that are non-perpendicular to the sensor. It is important to optimize the light economy—meaning the illumination power, field of view, and exposure time—in order to detect as many different objects as possible.

  • 42.
    Hemeren, Paul
    et al.
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Veto, Peter
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Thill, Serge
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment. Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Netherlands.
    Cai, Li
    Pin An Technology Co. Ltd., Shenzhen, China.
    Sun, Jiong
    Volvo Cars, Göteborg, Sweden.
    Kinematic-based classification of social gestures and grasping by humans and machine learning techniques2021In: Frontiers in Robotics and AI, E-ISSN 2296-9144, Vol. 8, no 308, p. 1-17, article id 699505Article in journal (Refereed)
    Abstract [en]

    The affective motion of humans conveys messages that other humans perceive and understand without conventional linguistic processing. This ability to classify human movement into meaningful gestures or segments plays also a critical role in creating social interaction between humans and robots. In the research presented here, grasping and social gesture recognition by humans and four machine learning techniques (k-Nearest Neighbor, Locality-Sensitive Hashing Forest, Random Forest and Support Vector Machine) is assessed by using human classification data as a reference for evaluating the classification performance of machine learning techniques for thirty hand/arm gestures. The gestures are rated according to the extent of grasping motion on one task and the extent to which the same gestures are perceived as social according to another task. The results indicate that humans clearly rate differently according to the two different tasks. The machine learning techniques provide a similar classification of the actions according to grasping kinematics and social quality. Furthermore, there is a strong association between gesture kinematics and judgments of grasping and the social quality of the hand/arm gestures. Our results support previous research on intention-from-movement understanding that demonstrates the reliance on kinematic information for perceiving the social aspects and intentions in different grasping actions as well as communicative point-light actions. 

    Download full text (pdf)
    fulltext
  • 43.
    Holm, Magnus
    et al.
    University of Skövde, School of Technology and Society. University of Skövde, The Virtual Systems Research Centre.
    Givehchi, Mohammad
    University of Skövde.
    Mohammed, Abdullah
    University of Skövde.
    Wang, Lihui
    KTH Royal Institute of Technology, Stockholm, Sweden.
    Web based monitoring and control of distant Robotic Operations2012In: Proceedings of the ASME 2012 International Manufacturing Science and Engineering Conference MSEC2012 June 4-8, 2012, Notre Dame, Indiana, USA, ASME Press, 2012, p. 605-612Conference paper (Refereed)
    Abstract [en]

    In order to improve the production efficiency while facing today’s manufacturing uncertainty, responsive and adaptive capabilities for rapid production changes are essential. This paper presents how dynamic control and real-time monitoring (embedded in a web-based Wise-ShopFloor framework) can integrate virtual models with real shop floors. Wise-ShopFloor (Web-based integrated sensor-driven e-ShopFloor)uses Java technologies (e.g., Java Servlet and Java3D) for implementing the system. It allows the operators, both remote and on-site, to monitor and control machines, devices and operations on a shop floor, based on run-time information from the connected machines, devices and their sensors. Two case studies are presented to demonstrate the approach towards web-based adaptive manufacturing. The first demonstrating how OPC-technology is used to improve the monitoring and control capabilities of the production and the second one focusing  on remote control of a robot eliminating the need of motion planning and tedious robot programming.

  • 44.
    Holm, Magnus
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Senington, Richard
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Wang, Wei
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Lindblom, Jessica
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Real-World Industrial Demonstrators on Human–Robot Collaborative Assembly2021In: Advanced Human-Robot Collaboration in Manufacturing / [ed] Lihui Wang; Xi Vincent Wang; József Váncza; Zsolt Kemény, Cham: Springer, 2021, 1, p. 413-438Chapter in book (Refereed)
    Abstract [en]

    The development of human–robot collaboration (HRC) is expected to have increasing importance in Industry 4.0 for a growing number of companies. The purpose of this chapter is to address the role and relevance of jointly designed, developed and implemented industrial demonstrators of HRC systems in projects, resulting in an increased knowledge—both for academia and industrial partners—of how to successfully present the obtained research results in an industrial environment. In particular, the chapter focuses on the role of demonstrators and presents three perspectives related to the use of demonstrators in bridging the gap between current knowledge and the work practice on the shop floor. One perspective is the joint process of developing three industrial demonstrators of HRC within the SYMBIO-TIC project, in order to provide the envisioned benefits for the addressed industrial requirements from the companies. Another perspective is how to evaluate the intended operators’ perceptions and experiences of these HRC systems from a human’s perspective as well as presenting the results obtained from such an evaluation. The last perspective is the voices raised from the industrial project partners’ views about jointly building industrial demonstrators as well as the benefits of participating in the research project. The chapter ends with conclusions, an identified research challenge and future work. It also addresses the societal impact of using collaborative robots in industry, and their contributions to society.

  • 45.
    Huang, Rui
    et al.
    School of Computer Science, Nanjing University of Posts and Telecommunications Nanjing City, China.
    Ericson, Stefan
    University of Skövde, School of Engineering Science. University of Skövde, The Virtual Systems Research Centre.
    An Efficient Way to Estimate the Focus of Expansion2018In: 2018 3rd IEEE International Conference on Image, Vision and Computing (ICIVC 2018), IEEE, 2018, p. 691-695Conference paper (Refereed)
    Abstract [en]

    Detecting independent motion from a single camera is a difficult task in computer vision. It is because the captured image sequences are the combinations of the objects' movements and the camera's ego-motion. One major branch is to find the focus of expansion (FOE) instead as the goal. This is ideal for the situation commonly seen in UAV's camera system. In this case, the translation is dominant in camera's motion while the rotation is relatively small. To separate the ego motion and scene structure, many researchers used the directional flow as the theoretic basis and extracted its properties related to FOE. In this paper, we formulate finding FOE as an optimizing problem. The position of FOE has the minimal standard deviation for the directional flow in all directions, which is also subjected to the introduced constraint. The experiments show the proposed methods out-perform the previous method.

  • 46.
    Johansson, Daniel
    et al.
    Örebro universitet, Akademin för naturvetenskap och teknik ; Centre for Applied Autonomous Sensor Systems (AASS), Örebro University, Sweden ; MSE Weibull AB, Älmhult, Sweden.
    De Vin, Leo J.
    University of Skövde, School of Technology and Society.
    Design and development of an augmented environment with high user mobility for training purposes2008In: Mechatronics 2008: Proceedings of the 11th Mechatronics Forum Biennial International Conference, University of Limerick, Ireland, 23-25 June 2008 / [ed] D. Toal, Limerick: University of Limerick , 2008Conference paper (Refereed)
    Abstract [en]

    The paper describes the design and development of a novel cost effective simulator for training of situation awareness, strategy and co-operation. By mixing real and virtual realities in combination with wireless and body-mounted hardware, the result is an augmented environment that allows for high physical mobility against a relatively low cost.

  • 47.
    Johansson, Marcus
    et al.
    University of Skövde, School of Engineering Science.
    Nilsson, Jacob
    University of Skövde, School of Engineering Science.
    Virtuell driftsättning: Verifiering av PLC logik mot simuleringsprogram2015Independent thesis Basic level (university diploma), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    To shorten project lead times Volvo Cars Skövde decided to explore the possibilities regarding verifi-cation of PLC-logic in simulation programs. The overall objective of the thesis was to analyze the pos-sibilities for establishing communication between the flow simulation program Plant Simulation and a PLC-device. A thorough understanding of the area virtual commissioning was obtained by writing the frame of reference and a literature review which served as basis for the continued practical work. Through a collection of interviews, discussions and an extensive literature review a better under-standing regarding how the communication between the different programs works, along with im-portant points that should be considered under a virtual commissioning project was obtained. A hy-pothetical system was developed in Plant Simulation by Volvo Cars Skövde to be used as a test sys-tem. The Simumatik3D model was created by emulating the Plant Simulation model and at the same time developing the PLC-logic in Siemens Step 7. During the development progress subsystems were verified in Simumatik3D against the created PLC-logic until the model was fully developed. To make sure that both the Simumatik3D model and the Plant Simulation model was valid a number of valida-tion points were tested. After the validation test the experimental phase started were different sce-narios were analyzed and tested to bring up any problems in the models to the surface. A thorough evaluation is presented in which the entire construction phase of the models is evaluated in terms of time required, advantages and disadvantages and communication with the PLC-device. The two pro-grams Simumatik3D and Plant Simulation was evaluated against one another in order to find out which program that is the most suited for virtual verification of PLC-logic. An overall methodology was developed based on the evaluation carried out and the experience gained from the implementa-tion of the work. The result from the developed methodology is presented which describes the parti-tion between the client and supplier, the communication between them and a visualization of the methodology-process. The result from the evaluation showed that Simumatik3D was more suitable for verification of PLC logic on a detailed level. The evaluation also showed that the PLC logic could be verified with Plant Simulation, but not on the same detailed level. Plant Simulation was more suit-able for making simulation models more realistic. Virtual commissioning of PLC-logic is a new con-cept on Volvo Cars Skövde and therefore can the result from this thesis form a basis for future work in this area. Virtual verification of PLC-logic is discussed in which several important aspects to think about is presented. The projects main goal to virtually verify PLC-logic in simulation programs was achieved and yielded good results, the partial objectives resulted in a thorough evaluation and future recommendations.

    Download full text (pdf)
    Virtual commissioning
  • 48.
    Johansson, Ronnie
    et al.
    Swedish Defence Research Agency, Stockholm, Sweden.
    Karlsson, Alexander
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Andler, Sten F.
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Brohede, Marcus
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    van Laere, Joeri
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Klingegård (Nilsson), Maria
    Folksam, Sweden ; Integrated Transport Research Lab, Royal Institute of Technology Stockholm, Sweden.
    Ziemke, Tom
    Linköping University, Sweden.
    On the Definition and Scope of Information Fusion as a Field of Research2022In: ISIF Perspectives on Information Fusion, ISSN 2831-4824, Vol. 5, no 1, p. 3-12Article in journal (Refereed)
    Abstract [en]

    A definition of information fusion (IF) as a field of research can benefit researchers within the field, who may use such a definition when motivating their own work and evaluating the contributions of others. Moreover, it can enable researchers and practitioners outside the field to more easily relate their own work to the field and more easily understand the scope of IF techniques and methods. Based on strengths and weaknesses of existing definitions, a definition is proposed that is argued to effectively fulfill the requirements that can be put on a definition of IF as a field of research. Although the proposed definition aims to be precise, it does not fully capture the richness and versatility of the IF field. To address that limitation, we highlight some topics to explore the scope of IF, covering the systems perspective of IF and its relation to ma-chine learning, optimization, robot behavior, opinion aggregation, and databases.

  • 49.
    Kolbeinsson, Ari
    et al.
    University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment.
    Lagerstedt, Erik
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Lindblom, Jessica
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Classification of Collaboration Levels for Human-Robot Cooperation in Manufacturing2018In: Advances in Manufacturing Technology XXXII: Proceedings of the 16th International Conference on Manufacturing Research, incorporating the 33rd National Conference on Manufacturing Research, September 11–13, 2018,  University of Skövde, Sweden / [ed] Peter Thorvald, Keith Case, Amsterdam: IOS Press, 2018, p. 151-156Conference paper (Refereed)
    Abstract [en]

    Industry 4.0 aims to support the factory of the future, which involves increased amounts of information systems and new ways of using automation. One new usage is collaboration between human and industrial robot in manufacturing, with both partners sharing work on a single task. Supporting human-robot collaboration (HRC) requires understanding the requirements of HRC as well as the differences to existing approaches where the goal is more automation, such as in the case of self-driving cars. We propose a framework that we call levels of collaboration to support this, and posit that this framework supports a mental model conducive to the design of lines incorporating HRC.

    Download full text (pdf)
    fulltext
  • 50.
    Lagerstedt, Erik
    University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.
    Perceiving agents: Pluralism, interaction, and existence2024Doctoral thesis, monograph (Other academic)
    Abstract [en]

    Perception is a vast subject to study. One way to approach and study it might therefore be to break down the concept into smaller pieces. Specific modes of sensation, mechanisms, phenomena, or contexts might be selected as the proxy or starting point for addressing perception as a whole. Another approach would be to widen the concept, and attempt to study perception through the larger context of which it is a part. I have, in this thesis, attempted the latter strategy, by emphasising an existential perspective, and examine the role and nature of perception through that lens.

    The larger perspective of broadening the scope does not specifically allow for better answers, but rather different kinds of answers, providing complementary ways of exploring what it means to be an artificial or natural agent, and what consequences that can have for the access to, as well as representation, processing, and communication of information. A broader stance can also facilitate exploration of questions regarding larger perspectives, such as the relation between individual agents, as well as their place in larger structures such as societies and cyber-physical systems.

    In this thesis I use existential phenomenology to frame the concept of perception, while drawing from theories in biology and psychology. My work has a particular focus on human-robot interaction, a field of study at a fascinating intersection of humans designing, using, and communicating with something human-made, partially human-like, yet distinctly non-human. The work is also applied to some aspects of the traffic domain which, given the increasing interest in self-driving vehicles, is partially another instance of complex and naturalistic human-robot interaction.

    Ultimately, I argue for a pluralistic and pragmatic approach to the understanding of perception, and its related concepts. To understand a system of agents as they interact, it is not only necessary to acknowledge their respective circumstances, but take serious the idea that none of the agents’ constructed worlds are more or less real, they might only be more or less relevant in relation to specific contexts, perspectives, or needs. Such an approach is particularly relevant when addressing the complexities of the increasingly urgent sustainability challenges.

    Download full text (pdf)
    fulltext
123 1 - 50 of 146
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf