The cloud technology provides sustainable solutions to the modern industrial robotic cells. Within the context, the objective of this research is to minimise the energy consumption of robots during assembly in a cloud environment. Given a trajectory and based on the inverse kinematics and dynamics of a robot from the cloud, a set of feasible configurations of the robot can be derived, followed by calculating the desirable forces and torques on the joints and links of the robot. Energy consumption is then calculated for each feasible configuration along the trajectory. The ones with the lowest energy consumption are chosen. Since the energy-efficient robot configurations lead to reduced overall energy consumption, this approach becomes instrumental and can be applied to energy-efficient robotic assembly.