Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Applicability analysis of computation double entendre humor recognition with machine learning methods
University of Skövde, School of Informatics.
2016 (English)Independent thesis Basic level (degree of Bachelor), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2016. , p. 29
Keywords [en]
Natural language processing, computational humor, machine learning
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:his:diva-12413OAI: oai:DiVA.org:his-12413DiVA, id: diva2:935746
Subject / course
Computer Science
Educational program
Web Developer - Programming
Supervisors
Examiners
Available from: 2016-06-20 Created: 2016-06-12 Last updated: 2016-06-20Bibliographically approved

Open Access in DiVA

fulltext(1605 kB)695 downloads
File information
File name FULLTEXT01.pdfFile size 1605 kBChecksum SHA-512
061d590bb1cae2e6264fe48ac53df244aee981c16ee11c61b20e5c904ab46dc4cccc310b661f17f1aee34d3317e0614154935f76667575e89925faee6a947914
Type fulltextMimetype application/pdf

By organisation
School of Informatics
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 695 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 490 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf