his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Supervised Learning Using a Symmetric Bilinear Form for Record Linkage
IIIA, Institut d'Investigació en Intel·ligència Artificial, CSIC, Consejo Superior de Investigaciones Científicas, Campus UAB s/n, Bellaterra, Spain / UAB, Universitat Autònoma de Barcelona, Campus UAB s/n, Bellaterra, Spain.
University of Skövde, School of Informatics. University of Skövde, The Informatics Research Centre. IIIA, Institut d'Investigació en Intel·ligència Artificial, CSIC, Consejo Superior de Investigaciones Científicas, Campus UAB s/n, Bellaterra, Spain. (Skövde Artificial Intelligence Lab (SAIL))ORCID iD: 0000-0002-0368-8037
DEIC, Dep. Enginyeria de la Informació i de les Comunicacions, UAB, Universitat Autònoma de Barcelona, Campus UAB s/n, Bellaterra, Spain.
2015 (English)In: Information Fusion, ISSN 1566-2535, E-ISSN 1872-6305, Vol. 26, 144-153 p.Article in journal (Refereed) Published
Abstract [en]

Record Linkage is used to link records of two different files corresponding to the same individuals. These algorithms are used for database integration. In data privacy, these algorithms are used to evaluate the disclosure risk of a protected data set by linking records that belong to the same individual. The degree of success when linking the original (unprotected data) with the protected data gives an estimation of the disclosure risk.

In this paper we propose a new parameterized aggregation operator and a supervised learning method for disclosure risk assessment. The parameterized operator is a symmetric bilinear form and the supervised learning method is formalized as an optimization problem. The target of the optimization problem is to find the values of the aggregation parameters that maximize the number of re-identification (or correct links). We evaluate and compare our proposal with other non-parametrized variations of record linkage, such as those using the Mahalanobis distance and the Euclidean distance (one of the most used approaches for this purpose). Additionally, we also compare it with other previously presented parameterized aggregation operators for record linkage such as the weighted mean and the Choquet integral. From these comparisons we show how the proposed aggregation operator is able to overcome or at least achieve similar results than the other parameterized operators. We also study which are the necessary optimization problem conditions to consider the described aggregation functions as metric functions.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 26, 144-153 p.
National Category
Engineering and Technology Interaction Technologies
Identifiers
URN: urn:nbn:se:his:diva-11130DOI: 10.1016/j.inffus.2014.11.004ISI: 000356121700010ScopusID: 2-s2.0-84939970504OAI: oai:DiVA.org:his-11130DiVA: diva2:821970
Available from: 2015-06-16 Created: 2015-06-16 Last updated: 2016-04-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Torra, Vicenç
By organisation
School of InformaticsThe Informatics Research Centre
In the same journal
Information Fusion
Engineering and TechnologyInteraction Technologies

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 242 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf