Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
MicroRNA regulatory network involved in impaired functionality in cardiomyocytes derived from human embryonic stem cells
University of Skövde, School of Life Sciences. University of Skövde, The Systems Biology Research Centre. (Bioinformatics)ORCID iD: 0000-0003-4697-0590
2012 (English)In: 25th International Conference on Computer Applications in Industry and Engineering 2012 (CAINE-2012) Held with the 4th International Symposium on Sensor Network and Application (SNA-2012): New Orleans, Louisiana, USA 14-16 November 2012 / [ed] Gongzhu Hu, International Society for Computers and Their Applications , 2012, p. 133-138Conference paper, Published paper (Refereed)
Abstract [en]

Human embryonic stem cells (hESCs) have unique properties of proliferation and self-renewal, and can be differentiated into various functional cell types e.g. cardiomyocytes. However, previous studies have shown that the expression of cardiac ion channels and genes involved in the Ca2+-handling machinery is immature in the stem cell derived cardiomyocytes, and novel approaches are therefore needed to improve the differentiation protocols and produce more functional cardiomyocytes. MicroRNAs (miRNAs) are small molecules, which play key roles in regulation of cellular development and may therefore be powerful tools to improve the differentiation.

This paper presents a method to derive a miRNA-mRNA regulatory network, which likely are important for the regulation of the functionality that currently is lacking in the hESC-derived cardiomyocytes. In total 14 ion channels and 9 calcium handling genes that have important roles in cardiac tissue and which have shown to be significantly lower expressed in hESC-derived cardiomyocytes compared to their in vivo counterpart, were investigated and scanned for putative miRNA target sites. For each of the predicted miRNAs, a combined prediction score (CPS) was calculated and a miRNA regulatory network was generated consisting of miRNAs with a high CPS and with multiple targets among the investigated genes. Results from this study propose that the miRNA network presented here is highly involved in the hampered functionality seen in hESC-derived cardiomyocytes, and that it therefore will constitute an important tool to select candidate miRNAs for future knockout- and overexpression studies.

Place, publisher, year, edition, pages
International Society for Computers and Their Applications , 2012. p. 133-138
National Category
Medical and Health Sciences Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Bioinformatics
Identifiers
URN: urn:nbn:se:his:diva-10230Scopus ID: 2-s2.0-84871992293ISBN: 978-1-62276-476-1 (print)OAI: oai:DiVA.org:his-10230DiVA, id: diva2:766653
Conference
25th International Conference on Computer Applications in Industry and Engineering, CAINE 2012 and the 4th International Symposium on Sensor Network and Application, SNA 2012, New Orleans, LA, United States, 14 November 2012 through 16 November 2012
Funder
Knowledge Foundation, 2011/0295Available from: 2014-11-27 Created: 2014-11-27 Last updated: 2022-01-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Synnergren, Jane

Search in DiVA

By author/editor
Synnergren, Jane
By organisation
School of Life SciencesThe Systems Biology Research Centre
Medical and Health SciencesMedical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 884 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf