In a human–robot collaborative manufacturing application where a work object can be placed in an arbitrary position, there is a need to calibrate the actual position of the work object. This paper presents an approach for automatic work-object calibration in flexible robotic systems. The approach consists of two modules: a global positioning module based on fixed cameras mounted around robotic workspace, and a local positioning module based on the camera mounted on the robot arm. The aim of the global positioning is to detect the work object in the working area and roughly estimate its position, whereas the local positioning is to define an object frame according to the 3D position and orientation of the work object with higher accuracy. For object detection and localization, coded visual markers are utilized. For each object, several markers are used to increase the robustness and accuracy of the localization and calibration procedure. This approach can be used in robotic welding or assembly applications.
Available online 22 December 2013