Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Knowledge Extraction in Manufacturing using Data Mining Techniques
University of Skövde, School of Technology and Society.
University of Skövde, School of Technology and Society.ORCID iD: 0000-0003-0111-1776
University of Skövde, School of Humanities and Informatics.
2008 (English)In: Proceedings of the Swedish Production Symposium 2008, Stockholm, Sweden, November 18-20, 2008, 2008, p. 8 sidor-Conference paper, Published paper (Refereed)
Abstract [en]

Nowadays many production companies collect and store production and process data in large databases. Unfortunately the data is rarely used in the most value generating way, i.e.,  finding  patterns  of  inconsistencies  and  relationships  between  process  settings  and quality  outcome.  This  paper  addresses  the  benefits  of  using  data  mining  techniques  in manufacturing  applications.  Two  different  applications  are  being  laid  out  but  the  used technique  and  software  is  the  same  in  both  cases.  The  first  case  deals  with  how  data mining  can  be  used  to  discover  the  affect  of  process  timing  and  settings  on  the  quality outcome in the casting industry. The result of a multi objective optimization of a camshaft process  is  being  used  as  the  second  case.  This  study  focuses  on  finding  the  most appropriate dispatching rule settings in the buffers on the line.  The  use  of  data  mining  techniques  in  these  two  cases  generated  previously  unknown knowledge. For example, in order to maximize throughput in the camshaft production, let the dispatching rule for the most severe bottleneck be of type Shortest Processing Time (SPT) and for the second bottleneck use any but Most Work Remaining (MWKR).

Place, publisher, year, edition, pages
2008. p. 8 sidor-
Keywords [en]
Data mining, Quality engineering, Knowledge extraction
Identifiers
URN: urn:nbn:se:his:diva-7129OAI: oai:DiVA.org:his-7129DiVA, id: diva2:603649
Conference
Swedish Production Symposium 2008, Stockholm, Sweden, November 18-20, 2008
Available from: 2013-02-06 Created: 2013-02-06 Last updated: 2017-11-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://www.diva-portal.org/smash/get/diva2:283131/FULLTEXT01

Authority records

Dudas, CatarinaNg, AmosBoström, Henrik

Search in DiVA

By author/editor
Dudas, CatarinaNg, AmosBoström, Henrik
By organisation
School of Technology and SocietySchool of Humanities and Informatics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1030 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf