This paper describes a method of detecting parallel rows on an agricultural field using an omnidirectional camera. The method works both on cameras with a fisheye lens and cameras with a catadioptric lens. A combination of an edge based method and a Hough transform method is suggested to find the rows. The vanishing point of several parallel rows is estimated using a second Hough transform. The method is evaluated on synthetic images generated with calibration data from real lenses. Scenes with several rows are produced, where each plant is positioned with a specified error. Experiments are performed on these synthetic images and on real field images. The result shows that good accuracy is obtained on the vanishing point once it is detected correctly. Further it shows that the edge based method works best when the rows consists of solid lines, and the Hough method works best when the rows consists of individual plants. The experiments also show that the combined method provides better detection than using the methods separately.
In this thesis Stefan investigates how cameras can be used for localization of an agricultural mobile robot. He focuses on relative measurement that can be used to determine where a weeding tool is operating relative a weed detection sensor. It incorporates downward-facing perspective cameras, forward-facing perspective cameras and omnidirectional cameras. Stefan shows how the camera’s ego-motion can be estimated to obtain not only the position in 3D but also the orientation. He also shows how line structures in the field can be used to navigate a robot along the rows.