Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy release rate and mode-mixity of adhesive joint specimens
University of Skövde, School of Technology and Society.
University of Skövde, School of Humanities and Informatics.
2007 (English)In: International Journal of Fracture, ISSN 0376-9429, E-ISSN 1573-2673, Vol. 144, no 4, p. 267-283Article in journal (Refereed) Published
Abstract [en]

Fracture behaviour of adhesive joints under mixed mode loading is analysed by using the beam/adhesive-layer (b/a) model, in which, the adherends are beamlike and the adhesive is constrained to a thin flexible layer between the adherends. The adhesive layer deforms in peel (mode I), in shear (mode II) or in a combination of peel and shear (mixed mode). Macroscopically, the ends of the bonded part of the joints can be considered as crack tips. The energy release rate of a single-layer adhesive joint is then formulated as a function of the crack tip deformation and the mode-mixity is defined by the shear portion of the total energy release rate. The effects of transversal forces and the flexibility of the adhesive layer are included in the b/a-model, which can be applied to joints with short crack length as well as short bonding length. The commonly used end-loaded unsymmetric semi-infinite joints are examined and closed-form solutions are given. In comparison to the singular-field model in the context of linear elastic fracture mechanics, the b/a-model replaces the singularity at the crack tip with a stress concentration zone. It is shown that the b/a-model and the singular-field model yield fundamentally different mode-mixities for unsymmetric systems. The presented closed-form b/a-model solutions facilitates parametric studies of the influence of unbalance in loading, unsymmetry of the adherends, as well as the flexibility of the adhesive layer, on the mode mixity of an adhesive joint.

Place, publisher, year, edition, pages
Springer, 2007. Vol. 144, no 4, p. 267-283
Keywords [en]
Adhesive layer, Fracture, Energy release rate, Mode-mixity, Beam model
Identifiers
URN: urn:nbn:se:his:diva-2149DOI: 10.1007/s10704-007-9099-9ISI: 000248978100004OAI: oai:DiVA.org:his-2149DiVA, id: diva2:32425
Available from: 2008-06-09 Created: 2008-06-09 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Mixed mode loaded adhesive layers: from measurement of material data to analysis of structural behaviour
Open this publication in new window or tab >>Mixed mode loaded adhesive layers: from measurement of material data to analysis of structural behaviour
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In manufacturing of multi-material products, a joining method that is able to cost-effectively assemble components made of dissimilar and similar material, with irregular geometries, is optimal. As an alternative, adhesive bonding is in-creasingly adapted by the industry, which is also used in manufacturing of multi-phase materials. In practice, adhesives are constrained to thin layers. An adhesive as a constrained layer behaves differently compared to the adhesive as a bulk material. In general, adhesive layers are loaded in peel (mode I), or in shear (mode II or III), or in a combination of peel and shear (mixed mode). This thesis deals with mixed mode loaded adhesive layers, from measurement of ma-terial data to analysis of structural behaviour. For studying of structural behaviour of adhesive joints, an integrated approach is developed. Arbitrarily end-loaded single-layer adhesive joints with arbitrary ad-herends of arbitrary length are analysed with the Beam/Adhesive layer (B/A) model. Closed-form solutions are obtained for the adhesive layer as well as for the adherends. For joints with a semi-infinite symmetric geometry, i.e. relative long joints with identical adherends loaded at one end, basic loading cases are obtained. Solutions to these basic loading cases are easy to use in designing of joints with this type of geometry. For nonlinear or general adhesive layers, a mode-dependent cohesive law is de-veloped. The normalized formulation is easy to implement in numerical simula-tions, yet, it captures the characteristics of adhesive layers. For experimental studies, this cohesive law is used to obtain the constitutive behaviour of an adhe-sive layer. The results confirm the ability and suitability of this cohesive law in modelling of adhesive layers. To obtain material data of adhesive layers, experimental methods are developed based on the J-integral. Two specimens, the Mixed mode double Cantilever Beams (MCB) specimen and the Unbalanced Double Cantilever Beams (UDCB) specimen, are designed to allow adhesive layers to be loaded in mixed mode. The MCB-specimen is implemented experimentally and the constitutive behav-iour of the tested adhesive layer is obtained.

Place, publisher, year, edition, pages
Chalmers tekniska högskola, 2007. p. 17
Series
Doktorsavhandlingar vid Chalmers tekniska högskola, ISSN 0346-718X ; 2572
Keywords
adhesive layer, mixed mode testing, cohesive law, J-integral
National Category
Mechanical Engineering
Research subject
Technology
Identifiers
urn:nbn:se:his:diva-2039 (URN)978-91-7291-891-7 (ISBN)
Public defence
(English)
Available from: 2008-05-09 Created: 2008-05-09 Last updated: 2017-11-27

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Alfredsson, SvanteHögberg, J. Li

Search in DiVA

By author/editor
Alfredsson, SvanteHögberg, J. Li
By organisation
School of Technology and SocietySchool of Humanities and Informatics
In the same journal
International Journal of Fracture

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1551 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf