his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling T helper cell activation and development
University of Skövde, School of Life Sciences.
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

T helper (Th) cell activation and development is one of the most critical events in regulating the adaptive immune response. Understanding its regulation could be of great therapeutical value as many severe diseases are associated with failure in controlling T cell activation and development. However, the regulation of T cell activation appears to be one of the most complex set of cellular and molecular interactions known in the immune system. There is therefore an urgent need for tools to unravel this complexity, and to make use of the quantitative experimental data. To address this issue, mathematical and computational models, based on rigorous biophysical and kinetic data, were developed to study the specific role of some of the major costimulatory molecules involved in Th cell activation, and others developed to investigate proposed theories about mechanisms involved in Th cell differentiation. The simulations of costimulation reveal new implications for the function of the costimulatory molecules CD28 and CTLA-4, and their ligands B7-1 and B7-2, and show how binding affinity, stoichiometric properties, expression levels, and, in particular, competition effects, all profoundly influence complex formation at the immunological synapse. The results support the concept that B7-2 and B7-1 are the dominant ligands of CD28 and CTLA-4, respectively, and indicate that the inability of B7-2 to recruit CTLA-4 to the synapse cannot be, as has been previously proposed, due to the different binding properties of B7-1 and B7-2. Simulations of Th cell development reveal that both instructive and selective processes are likely to be involved in Th cell differentiation. In addition, further simulations indicate that Th2 cells are more likely to become dominant by inhibiting Th1 cells (negative selection), rather than selecting their own growth (positive selection). This thesis also includes an experimental work in which the immunomodulatory role of the bacterial signalling molecule N-3-(oxododecanoyl)-L-homoserine lactone (OdDHL) was analysed. This study strongly suggests that OdDHL suppresses Th cell activation and development, and that it is likely targeting the intracellular signalling events involved in the early stages of Th cell activation.

Place, publisher, year, edition, pages
University of new South Wales , 2006. , 224 p.
Keyword [en]
T cells, mathematical models, differentiation, computer simulation, mathematical models; cellular signal transduction
National Category
Bioinformatics and Systems Biology
Research subject
Natural sciences; Technology
Identifiers
URN: urn:nbn:se:his:diva-2032OAI: oai:DiVA.org:his-2032DiVA: diva2:32308
Public defence
(English)
Available from: 2008-05-07 Created: 2008-05-07 Last updated: 2013-04-16

Open Access in DiVA

No full text

Other links

http://handle.unsw.edu.au/1959.4/30602

Search in DiVA

By author/editor
Jansson, Andreas
By organisation
School of Life Sciences
Bioinformatics and Systems Biology

Search outside of DiVA

GoogleGoogle Scholar

Total: 817 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf