Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mixed mode cohesive law
University of Skövde, School of Technology and Society.
2006 (English)In: International Journal of Fracture, ISSN 0376-9429, E-ISSN 1573-2673, Vol. 141, no 3-4, p. 549-559Article in journal (Refereed) Published
Abstract [en]

A traction-separation relation to model the fracture process is presented. The cohesive law captures the linear elastic and softening behaviour prior to fracture. It also allows for different fracture parameters, such as fracture energy, strength and critical separation in different mode mixities. Thus, the fracture process in mode I (peel), in mode II (shear) or in mixed mode (a combination of peel and shear) can be modelled without the limitation of a common fracture energy in peel and shear. Examples are given in form of FE- implementations of the normalised cohesive law, namely for the Unsymmetrical Double Cantilever Beam (UDCB) specimen and the Mixed-mode double Cantilever Beam (MCB) specimen. Both specimens are adhesively bonded and loaded in mixed-mode

Place, publisher, year, edition, pages
Springer Netherlands, 2006. Vol. 141, no 3-4, p. 549-559
Keywords [en]
Cohesive law, Fracture energy, Traction-separation relation, Mixed mode
National Category
Engineering and Technology
Research subject
Technology
Identifiers
URN: urn:nbn:se:his:diva-1971DOI: 10.1007/s10704-006-9014-9ISI: 000243181600013Scopus ID: 2-s2.0-33751116800OAI: oai:DiVA.org:his-1971DiVA, id: diva2:32247
Available from: 2008-04-16 Created: 2008-04-16 Last updated: 2017-12-12Bibliographically approved
In thesis
1. Mixed mode loaded adhesive layers: from measurement of material data to analysis of structural behaviour
Open this publication in new window or tab >>Mixed mode loaded adhesive layers: from measurement of material data to analysis of structural behaviour
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In manufacturing of multi-material products, a joining method that is able to cost-effectively assemble components made of dissimilar and similar material, with irregular geometries, is optimal. As an alternative, adhesive bonding is in-creasingly adapted by the industry, which is also used in manufacturing of multi-phase materials. In practice, adhesives are constrained to thin layers. An adhesive as a constrained layer behaves differently compared to the adhesive as a bulk material. In general, adhesive layers are loaded in peel (mode I), or in shear (mode II or III), or in a combination of peel and shear (mixed mode). This thesis deals with mixed mode loaded adhesive layers, from measurement of ma-terial data to analysis of structural behaviour. For studying of structural behaviour of adhesive joints, an integrated approach is developed. Arbitrarily end-loaded single-layer adhesive joints with arbitrary ad-herends of arbitrary length are analysed with the Beam/Adhesive layer (B/A) model. Closed-form solutions are obtained for the adhesive layer as well as for the adherends. For joints with a semi-infinite symmetric geometry, i.e. relative long joints with identical adherends loaded at one end, basic loading cases are obtained. Solutions to these basic loading cases are easy to use in designing of joints with this type of geometry. For nonlinear or general adhesive layers, a mode-dependent cohesive law is de-veloped. The normalized formulation is easy to implement in numerical simula-tions, yet, it captures the characteristics of adhesive layers. For experimental studies, this cohesive law is used to obtain the constitutive behaviour of an adhe-sive layer. The results confirm the ability and suitability of this cohesive law in modelling of adhesive layers. To obtain material data of adhesive layers, experimental methods are developed based on the J-integral. Two specimens, the Mixed mode double Cantilever Beams (MCB) specimen and the Unbalanced Double Cantilever Beams (UDCB) specimen, are designed to allow adhesive layers to be loaded in mixed mode. The MCB-specimen is implemented experimentally and the constitutive behav-iour of the tested adhesive layer is obtained.

Place, publisher, year, edition, pages
Chalmers tekniska högskola, 2007. p. 17
Series
Doktorsavhandlingar vid Chalmers tekniska högskola, ISSN 0346-718X ; 2572
Keywords
adhesive layer, mixed mode testing, cohesive law, J-integral
National Category
Mechanical Engineering
Research subject
Technology
Identifiers
urn:nbn:se:his:diva-2039 (URN)978-91-7291-891-7 (ISBN)
Public defence
(English)
Available from: 2008-05-09 Created: 2008-05-09 Last updated: 2017-11-27

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Högberg, J. Li

Search in DiVA

By author/editor
Högberg, J. Li
By organisation
School of Technology and Society
In the same journal
International Journal of Fracture
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 252 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf