I detta arbete undersöks hur bestraffningsmetoder för att bestraffa storleken på GP-program påverkar generaliseringsförmågan. Arbetet grundar sig på ett arbete som Cavaretta och Chellapilla gjort, där de undersöker skillnaden i generaliseringsförmåga mellan bestraffningsmetoden ”Complexity Penalty functions” och ingen bestraffningsmetod.
I detta arbete har nya experiment gjorts med ”Complexity Penalty functions” och ”Adaptive parsimony pressure”, som är en annan bestraffningsmetod. Dessa bestraffningsmetoder har undersökts i samma domän som Cavaretta och Chellapilla och ytterligare i en domän för att ge en bättre bild av hur de generaliserar.
I arbetet visar det sig att användningen av någon av bestraffningsmetoderna ”Complexity Penalty functions” och ”Adaptive parsimony pressure” oftast ger bättre generaliseringsförmåga hos GP-program. Detta motsäger det Cavaretta och Chellapilla kommer fram till i sitt arbete. ”Adaptive parsimony pressure” verkar också vara bättre på att generalisera än ”Complexity Penalty functions”.