The number of experimentally determined protein structures in the protein data bank (PDB) is continuously increasing. The common features like; cellular location, function, topology, primary structure, secondary structure, tertiary structure, domains or fold are used to classify them. Therefore, there are various methods available for classification of proteins. In this work we are attempting an additional method for making appropriate classification, i.e. solvent energy. Solvation is one of the most important properties of macromolecules and biological membranes by which they remain stabilized in different environments. The energy required for solvation can be measured in term of solvent energy. Proteins from similar environments are investigated for similar solvent energy. That is, the solvent energy can be used as a measure to analyze and classify proteins. In this project solvent energy of proteins present in the Protein Data Bank (PDB) was calculated by using Jones’ algorithm. The proteins were classified into two classes; transmembrane and globular. The results of statistical analysis showed that the values of solvent energy obtained for two main classes (globular and transmebrane) were from different sets of populations. Thus, by adopting classification based on solvent energy will definitely help for prediction of cellular placement.