Adapting digital forensics processes for quantum computing: Insights from established industry guidelines supplemented by qualitative interviews
2024 (English) Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE credits
Student thesis
Abstract [en]
This thesis explores the evolving landscape of digital forensics in the context of quantum computing advancements, which challenge the foundational integrity of digital evidence. The focus is on the globally recognized digital forensic guidelines, NIST SP 800-86 and ISO/IEC 27037:2012, and their capacity to safeguard evidence against the unique capabilities of quantum systems. This thesis identifies vulnerabilities within existing forensic models through a comprehensive document analysis and expert interviews and proposes strategic modifications to enhance their robustness.
Key findings suggest that traditional digital forensic methodologies, while robust under current technological standards, must address quantum data’s multi-state, entanglement, and no-cloning properties, which can fundamentally alter digital evidence. The thesis advocates for a paradigm shift in forensic processes to incorporate quantum-resistant techniques that ensure the integrity and admissibility of evidence. Additionally, it highlights the necessity for ongoing education and collaborative research to effectively adapt digital forensics to this new technological era. This research contributes to the theoretical framework and practical applications of digital forensics, aiming to future-proof forensic practices against the disruptive nature of quantum computing.
Place, publisher, year, edition, pages 2024. , p. 51, 1
Keywords [en]
Digital forensics, quantum computing, forensic guidelines, NIST SP 800-86, ISO/IEC 27037:2012, evidence integrity, quantum-resistant techniques, quantum superposition, quantum entanglement, no-cloning theorem, forensic process adaptation, quantum forensics, digital evidence, quantum era challenges, forensic methodology
National Category
Information Systems, Social aspects
Identifiers URN: urn:nbn:se:his:diva-23965 OAI: oai:DiVA.org:his-23965 DiVA, id: diva2:1871685
Subject / course Informationsteknologi
Educational program Privacy, Information and Cyber Security - Master's Programme 120 ECTS
Supervisors
Examiners
2024-06-172024-06-172024-06-17 Bibliographically approved