Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Previous Experience Matters: An in-Person Investigation of Expectations in Human–Robot Interaction
University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment. (Interaction Lab)ORCID iD: 0000-0001-8642-336x
University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment. Department of Information Technology, Uppsala University, Sweden. (Interaction Lab)ORCID iD: 0000-0003-0946-7531
University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment. University of Skövde, School of Engineering Science. University of Skövde, Virtual Engineering Research Environment. (Interaction Lab)ORCID iD: 0000-0003-2254-1396
University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment. (Interaction Lab)ORCID iD: 0000-0002-6568-9342
2024 (English)In: International Journal of Social Robotics, ISSN 1875-4791, E-ISSN 1875-4805, Vol. 16, no 3, p. 447-460Article in journal (Refereed) Published
Abstract [en]

The human–robot interaction (HRI) field goes beyond the mere technical aspects of developing robots, often investigating how humans perceive robots. Human perceptions and behavior are determined, in part, by expectations. Given the impact of expectations on behavior, it is important to understand what expectations individuals bring into HRI settings and how those expectations may affect their interactions with the robot over time. For many people, social robots are not a common part of their experiences, thus any expectations they have of social robots are likely shaped by other sources. As a result, individual expectations coming into HRI settings may be highly variable. Although there has been some recent interest in expectations within the field, there is an overall lack of empirical investigation into its impacts on HRI, especially in-person robot interactions. To this end, a within-subject in-person study () was performed where participants were instructed to engage in open conversation with the social robot Pepper during two 2.5 min sessions. The robot was equipped with a custom dialogue system based on the GPT-3 large language model, allowing autonomous responses to verbal input. Participants’ affective changes towards the robot were assessed using three questionnaires, NARS, RAS, commonly used in HRI studies, and Closeness, based on the IOS scale. In addition to the three standard questionnaires, a custom question was administered to capture participants’ views on robot capabilities. All measures were collected three times, before the interaction with the robot, after the first interaction with the robot, and after the second interaction with the robot. Results revealed that participants to large degrees stayed with the expectations they had coming into the study, and in contrast to our hypothesis, none of the measured scales moved towards a common mean. Moreover, previous experience with robots was revealed to be a major factor of how participants experienced the robot in the study. These results could be interpreted as implying that expectations of robots are to large degrees decided before interactions with the robot, and that these expectations do not necessarily change as a result of the interaction. Results reveal a strong connection to how expectations are studied in social psychology and human-human interaction, underpinning its relevance for HRI research.

Place, publisher, year, edition, pages
Springer Nature, 2024. Vol. 16, no 3, p. 447-460
Keywords [en]
Expectations, Previous experience, Social robot, Human–robot interaction, Experiment, Expectation gap, Pepper, GPT, Large language models
National Category
Robotics Human Computer Interaction Social Psychology
Research subject
Interaction Lab (ILAB)
Identifiers
URN: urn:nbn:se:his:diva-23641DOI: 10.1007/s12369-024-01107-3ISI: 001172192700001Scopus ID: 2-s2.0-85186211586OAI: oai:DiVA.org:his-23641DiVA, id: diva2:1841637
Funder
University of Skövde
Note

CC BY 4.0 DEED

Published: 29 February 2024

Open access funding provided by University of Skövde.

Available from: 2024-02-29 Created: 2024-02-29 Last updated: 2024-06-13Bibliographically approved
In thesis
1. What did you expect?: A human-centered approach to investigating and reducing the social robot expectation gap
Open this publication in new window or tab >>What did you expect?: A human-centered approach to investigating and reducing the social robot expectation gap
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

We live in a complex world where we proactively plan and execute various behaviors by forming expectations in real time. Expectations are beliefs regarding the future state of affairs and they play an integral part of our perception, attention, and behavior. Over time, our expectations become more accurate as we interact with the world and others around us. People interact socially with other people by inferring others' purposes, intentions, preferences, beliefs, emotions, thoughts, and goals. Similar inferences may occur when we interact with social robots. With anthropomorphic design, these robots are designed to mimic people physically and behaviorally. As a result, users predominantly infer agency in social robots, often leading to mismatched expectations of the robots' capabilities, which ultimately influences the user experience. 

In this thesis, the role and relevance of users' expectations in first-hand social human-robot interaction (sHRI) was investigated. There are two major findings. First, in order to study expectations in sHRI, the social robot expectation gap evaluation framework was developed. This framework supports the systematic study and evaluation of expectations over time, considering the unique context where the interaction is unfolding. Use of the framework can inform sHRI researchers and designers on how to manage users’ expectations, not only in the design, but also during evaluation and presentation of social robots. Expectations can be managed by identifying what kinds of expectations users have and aligning these through design and dissemination which ultimately creates more transparent and successful interactions and collaborations. The framework is a tool for achieving this goal. Second, results show that previous experience has a strong impact on users’ expectations. People have different expectations of social robots and view social robots as both human-like and as machines. Expectations of social robots can vary according to the source of the expectation, with those who had previous direct experiences of robots having different expectations than those who relied on indirect experiences to generate expectations.    

One consequence of these results is that expectations can be a confounding variable in sHRI research. Previous experience with social robots can prime users in future interactions with social robots. These findings highlight the unique experiences users have, even when faced with the same robot. Users' expectations and how they change over time shapes the users’ individual needs and preferences and should therefore be considered in the interpretation of sHRI. In doing so, the social robot expectation gap can be reduced.

Abstract [sv]

Vi lever i en komplex värld och för att kunna hantera denna komplexitet formar vi förväntningar. Förväntningar är antaganden om framtida tillstånd och är en vital del av vår perception, uppmärksamhet och beteende. Genom att interagera med omvärlden och andra människor blir våra förväntningar mer precisa och korrekta över tid. I en social interaktion behöver vi förstå den andra personens syften, avsikter, preferenser, övertygelser, känslor, tankar och mål. Sociala robotar är utformade för att skapa liknande inferenser när användare interagerar med dem. Detta kan leda till missbedömningar mellan vad vi förväntar oss av sociala robotar och vad dessa artefakter är kapabla till, vilket påverkar användarupplevelsen av sociala robotar.

I den här avhandlingen presenteras den forskning som har utförts för att studera rollen och relevansen av människors förväntningar i social människa-robotinteraktion (sMRI). Resultaten kan delas in i två större fynd. Det första fyndet är ett utvärderingsramverk som ämnar att systematiskt studera användares förväntningar av sociala robotar i en interaktion, med fokus på hur förväntningar ändras över tid i en interaktion, med interaktionens unika kontext i åtanke. Ramverket är menat för designers av sociala robotar och forskare inom sMRI-fältet för att bättre studera, hantera, och förstå förväntningar, både i robotarnas design och i robotarnas agerande. Det andra fyndet består av de empiriska resultat som visar hur tidigare erfarenheter påverkar användares förväntningar. Förväntningarna baseras till stor del på vilka typer av tidigare erfarenheter användare har, där de med direkta erfarenheter av robotar har andra förväntningar än de med indirekta erfarenheter. Vidare visar resultaten att användare ser sociala robotar både som människolika och som maskiner samtidigt.

Förväntningar kan också ses som en bakomliggande variabel inom sMRI-forskning eftersom tidigare erfarenheter kan påverka deltagare i kommande interaktioner med sociala robotar. Resultaten visar även att användarupplevelsen är unik för varje användare, även om roboten är densamma, vilket bör tas i åtanke när resultat tolkas i en sMRI-kontext. Genom att ha förväntningar i åtanke kan vi minska det gap som uppstår mellan människors förväntningar av sociala robotar och robotarnas faktiska förmågor. På så sätt kan vi främja positiva användarupplevelser och förbättra interaktionen mellan människa och robot.

Place, publisher, year, edition, pages
Skövde: University of Skövde, 2024. p. 220
Series
Dissertation Series ; 55
National Category
Robotics Interaction Technologies Social Psychology Ethics Social Psychology Computer Vision and Robotics (Autonomous Systems) Human Computer Interaction
Research subject
Interaction Lab (ILAB)
Identifiers
urn:nbn:se:his:diva-23414 (URN)978-91-987906-9-6 (ISBN)
Public defence
2024-01-19, G207, Högskolevägen 3, Skövde, 13:00 (English)
Opponent
Supervisors
Note

Ett av sju delarbeten (övriga se rubriken Delarbeten/List of papers):

VII Lindblom, Jessica, Rosén, Julia, Lamb, Maurice, and Billing, Erik (Manuscript). “Disentangling People’s Experiences and Expectations when Interacting with the Social Robot Pepper: A Qualitative Analysis”. In: Manuscript for scientific journal, pp. 1–41.

Available from: 2023-12-07 Created: 2023-12-07 Last updated: 2024-02-29Bibliographically approved

Open Access in DiVA

fulltext(1443 kB)53 downloads
File information
File name FULLTEXT02.pdfFile size 1443 kBChecksum SHA-512
7a311f20ebf0eae7955bcb95ddec3afe854371f0ac61c7534d9169689d7a82f3720acde50abe4e525bce6e1c2710935a149fb8fa1dc6859f4ab33913bc834b1f
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Rosén, JuliaLindblom, JessicaLamb, MauriceBilling, Erik

Search in DiVA

By author/editor
Rosén, JuliaLindblom, JessicaLamb, MauriceBilling, Erik
By organisation
School of InformaticsInformatics Research EnvironmentSchool of Engineering ScienceVirtual Engineering Research Environment
In the same journal
International Journal of Social Robotics
RoboticsHuman Computer InteractionSocial Psychology

Search outside of DiVA

GoogleGoogle Scholar
Total: 303 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 516 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf