Högskolan i Skövde

his.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ROI Analysis of the System Architecture Virtual Integration Initiative
University of Skövde, School of Informatics. University of Skövde, Informatics Research Environment.ORCID iD: 0000-0003-2895-0780
The Boeing Company, USA.
Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA, USA.
2018 (English)Report (Other academic)
Abstract [en]

The System Architecture Virtual Integration (SAVI) initiative is a multiyear, multimillion dollar program that is developing the capability to virtually integrate systems before designs are implemented and tested on hardware. The purpose of SAVI is to develop a means of countering the costs of exponentially increasing complexity in modern aerospace software systems. The program is sponsored by the Aerospace Vehicle Systems Institute, a research center of the Texas Engineering Experiment Station, which is a member of the Texas A&M University System. This report presents an analysis of the economic effects of the SAVI approach on the development of software-reliant systems for aircraft compared to existing development paradigms. The report describes the detailed inputs and results of a return-on-investment (ROI) analysis to determine the net present value of the investment in the SAVI approach. The ROI is based on rework cost-avoidance attributed to earlier discovery of requirements errors through analysis of virtually integrated models of the embedded software system expressed in the SAE International Architecture Analysis and Design Language (AADL) standard architecture modeling language. The ROI analysis uses conservative estimates of costs and benefits, especially for those parameters that have a proven, strong correlation to overall system-development cost. The results of the analysis, in part, show that the nominal cost reduction for a system that contains 27 million source lines of code would be $2.391 billion (out of an estimated $9.176 billion), a 26.1% cost savings. The original study, reported here, had a follow-on study to validate and further refine the estimated cost savings.

Place, publisher, year, edition, pages
Carnegie Mellon University, Software Engineering Institute , 2018. , p. viii, 34 s.
Series
Technical Report ; CMU/SEI-2018-TR-002
National Category
Embedded Systems Software Engineering Computer Systems Computer Sciences Computer Engineering
Identifiers
URN: urn:nbn:se:his:diva-23301DOI: 10.1184/R1/12363080.v1OAI: oai:DiVA.org:his-23301DiVA, id: diva2:1803279
Note

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Available from: 2023-10-09 Created: 2023-10-09 Last updated: 2023-10-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Hansson, Jörgen

Search in DiVA

By author/editor
Hansson, Jörgen
By organisation
School of InformaticsInformatics Research Environment
Embedded SystemsSoftware EngineeringComputer SystemsComputer SciencesComputer Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 104 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf