Sepsis is a dangerous and potentially fatal condition that has a mysterious origin, underscoring the significance of prompt and accurate diagnosis and treatment. Bacterial whole-genome sequencing, which is widely used in clinical microbiology, stands at the forefront of sequencing technologies, particularly to combat sepsis. The aim of this thesis is to improve sepsis treatment by examining the genetic characteristics and drug resistance patterns of the common sepsis-causing bacteria Pseudomonas and Proteus spp., by analyzing the whole-genome sequencing data of bacterial isolates using an in-house-developed pipeline. The result was compared with a commercial cloud-based platform from 1928 Diagnostic (Gothenburg, Sweden), as well as the results from a clinical laboratory. Using Illumina HiSeq X next-generation sequencing technology, whole-genome data from 88 isolates of Pseudomonas and Proteus spp. was obtained. The isolates were obtained during a prospective observational study of community-onset severe sepsis and septic shock in adults at Skaraborg Hospital in Sweden's western region. The collected isolates were characterized using approved laboratory techniques, such as phenotypic antibiotic susceptibility testing (AST) in accordance with EUCAST guidelines and species identification by MALDI-TOF MS analysis. The species identification result matched the phenotypic method, with the exception of two isolates from Pseudomonas samples and four isolates from Proteus samples. When benchmarking the in-house pipeline and 1928 platform for Pseudomonas spp., predicted 97% of the isolates were resistant to at least one class of the tested antibiotics, of which 94% shows multi-drug resistance. In phenotypes, 88% of the isolates had at least one antibiotic resistance future, of which 68% shows multi-drug resistance. The most prevalent sequence types (STs) identified were ST 3285 and ST111 (9.3%) and ST564 and ST17 (6.98%) each, and both pipelines accurately predicted the number of multilocus types. The in-house pipeline reported 9820 Pseudomonas virulence genes, with PhzB1, a metabolic factor, being the most common gene. It was discovered that there was a significant correlation between the virulence factor gene count and the multilocus sequence typing (MLST) (p = 0.00001). With a Simpson's Diversity Index of 0.98, the urine culture specimens showed the greatest ST diversity. Plasmids were detected in twelve samples (20.93%) in total. In general, this study provided a detailed description of the bacterial future for Pseudomonas and Proteus organisms using WGS data. This research shows the applicability of the in-house and 1928 pipelines in the identification of sepsis-causing organisms with accuracy. It also showed the need for an organized and easy-to-use international pipeline to implement and analyze WGS bacterial data and to compare it with laboratory results as needed.