Högskolan i Skövde

his.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The battle against sepsis: exploring the genotypic diversity of pseudomonas and proteus clinical isolates
University of Skövde, School of Bioscience.
2023 (English)Independent thesis Advanced level (degree of Master (Two Years)), 30 credits / 45 HE creditsStudent thesis
Abstract [en]

Sepsis is a dangerous and potentially fatal condition that has a mysterious origin, underscoring the significance of prompt and accurate diagnosis and treatment. Bacterial whole-genome sequencing, which is widely used in clinical microbiology, stands at the forefront of sequencing technologies, particularly to combat sepsis. The aim of this thesis is to improve sepsis treatment by examining the genetic characteristics and drug resistance patterns of the common sepsis-causing bacteria Pseudomonas and Proteus spp., by analyzing the whole-genome sequencing data of bacterial isolates using an in-house-developed pipeline. The result was compared with a commercial cloud-based platform from 1928 Diagnostic (Gothenburg, Sweden), as well as the results from a clinical laboratory. Using Illumina HiSeq X next-generation sequencing technology, whole-genome data from 88 isolates of Pseudomonas and Proteus spp. was obtained. The isolates were obtained during a prospective observational study of community-onset severe sepsis and septic shock in adults at Skaraborg Hospital in Sweden's western region. The collected isolates were characterized using approved laboratory techniques, such as phenotypic antibiotic susceptibility testing (AST) in accordance with EUCAST guidelines and species identification by MALDI-TOF MS analysis. The species identification result matched the phenotypic method, with the exception of two isolates from Pseudomonas samples and four isolates from Proteus samples. When benchmarking the in-house pipeline and 1928 platform for Pseudomonas spp., predicted 97% of the isolates were resistant to at least one class of the tested antibiotics, of which 94% shows multi-drug resistance. In phenotypes, 88% of the isolates had at least one antibiotic resistance future, of which 68% shows multi-drug resistance. The most prevalent sequence types (STs) identified were ST 3285 and ST111 (9.3%) and ST564 and ST17 (6.98%) each, and both pipelines accurately predicted the number of multilocus types. The in-house pipeline reported 9820 Pseudomonas virulence genes, with PhzB1, a metabolic factor, being the most common gene. It was discovered that there was a significant correlation between the virulence factor gene count and the multilocus sequence typing (MLST) (p = 0.00001). With a Simpson's Diversity Index of 0.98, the urine culture specimens showed the greatest ST diversity. Plasmids were detected in twelve samples (20.93%) in total. In general, this study provided a detailed description of the bacterial future for Pseudomonas and Proteus organisms using WGS data. This research shows the applicability of the in-house and 1928 pipelines in the identification of sepsis-causing organisms with accuracy. It also showed the need for an organized and easy-to-use international pipeline to implement and analyze WGS bacterial data and to compare it with laboratory results as needed.

Place, publisher, year, edition, pages
2023. , p. 52
National Category
Bioinformatics and Systems Biology
Identifiers
URN: urn:nbn:se:his:diva-23220OAI: oai:DiVA.org:his-23220DiVA, id: diva2:1797397
Subject / course
Systems Biology
Educational program
Infection Biology - Master’s Programme 120 ECTS
Supervisors
Examiners
Available from: 2023-09-14 Created: 2023-09-14 Last updated: 2023-09-14Bibliographically approved

Open Access in DiVA

fulltext(2789 kB)151 downloads
File information
File name FULLTEXT01.pdfFile size 2789 kBChecksum SHA-512
1ad394810e0c6af33b5deb16f30297d3c1c56ad60c082ea6be21e87cad178d3378debc45632af99b187cfc3e23402ac98895f485b18667f5b25ac5ee2e7e5888
Type fulltextMimetype application/pdf

By organisation
School of Bioscience
Bioinformatics and Systems Biology

Search outside of DiVA

GoogleGoogle Scholar
Total: 151 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 477 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • apa-cv
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf